Gm2irk - Образовательный портал
  • Главная
  • СМИ
  • Продукт горения: классификация, виды, описание. Характеристика процесса горения Горение органических веществ в общем виде

Продукт горения: классификация, виды, описание. Характеристика процесса горения Горение органических веществ в общем виде

Сгорание органических веществ сопровождается уменьшением внутренней энергии.
Сгорание органического вещества в избытке кислорода при 1000 - 1200 С проходит практически мгновенно, и нет необходимости опасаться того, что образовавшиеся пары воды и углекислый газ не успеют поглотиться в аппаратах. Поглотительная способность аскарита, безводного хлорида кальция и ангидрона весьма велики. Например, нами установлено, что органические вещества в количествах до 0 5 г сгорают количественно без катализаторов в струе кислорода, пропускаемого со скоростью 6 л / мин в течение 2 мин.
После сгорания органического вещества колбу вращают 1 мин.
Аппарат Сокслета. После сгорания органического вещества остаток в тигле прокаливают до постоянного веса. Для получения однородных результатов всю золу обычно переводят в сернокислые соли. Для этого к содержимому тигля прибавляют несколько капель концентрированной серной кислоты. Серную кислоту выпаривают под тягой на маленьком пламени газовой горелки и тигель прокаливают до постоянного веса.
Теплоты сгорания органических веществ довольно велики (обычно от 3 5 до 10 ккал / г), поэтому для их измерения часто используют жидкостные калориметры больших размеров - з калориметрический сосуд помещается от 2 до 4 л воды. Форма калориметрического сосуда и тип мешалки выбирают с учетом возможно быстрого и полного перемешивания всей массы жидкости.
Теплотой сгорания органического вещества называется тепловой эффект реакции полного сгорания данного вещества до СО2 (Газ), Н2ОЖИДК и соответствующих продуктов полного окисления других элементов, если они входили в состав данного вещества.
Продукты сгорания органического вещества вместе с содержащимся в нем в качестве примеси мышьяка массой 2 00 г были поглощены щелочным раствором ЬЬСЬ. Образовавшийся арсенат был оттитрован 15 85 мл 0 01 М Pb (NO3) 2 (/ С 0 9612) в присутствии пиридилазорезорцина.
Продукты сгорания органического вещества вместе с содержащимся в нем в качестве примеси мышьяка массой 2 00 г были поглощены щелочным раствором ШСЬ. Образовавшийся арсенат был оттитрован 15 85 мл 0 01 М Pb (NO3) 2 (/ (0 9612) в присутствии пиридилазорезорцина.
При сгорании органического вещества в калориметре выделяется тепло.
При сгорании органического вещества в водородном пламени образуется ряд ионизированных углеродных соединений. Вследствие образования этих ионов между изолированной горелкой, на которую подано напряжение, и электродом может протекать ток. Для изучения свойств пламенных детекторов разработана конструкция двухпламенного ионизационного детектора (рис. 1 и 2), который можно использовать и в виде однопламенного.
При сгорании органического вещества в водородном пламени образуется ряд ионизированных углеродных соединений. Вследствие образования этих ионов между изолированной горелкой, на которую подано напряжение, и электродом может протекать ток. Для изучения свойств пламенных детекторов разработана конструкция двухпламенного ионизационного детектора (рис. 1 и 2), который можно использовать и в виде одноплеменного.
Поэтому теплоту сгорания органических веществ (особенно многоатомных) можно считать относительно не изменяющейся с темпера-турой.

Измерение теплот сгорания органических веществ и изучение закономерностей в их величинах является одним из старейших разделов термохимии.
В продуктах сгорания органических веществ, содержащих азот, азот находится в свободном состоянии. Поэтому, чтобы открыть присутствие азота в органическом соединении, нужно разрушить это соединение и перевести азот в такое соединение, которое легко открыть какими-нибудь качественными реакциями.
Общий вид камерной цилиндрической вертикальной печи для сжигания сточных вод (конструкция ВНИИТ. На полноту сгорания органических веществ, находящихся в ПСВ-г, сильное влияние оказывают условия диспергирования и распределения жидкости форсунками в печи.
Определение теплоты сгорания органических веществ, производимое при помощи особых калориметрических установок в калориметрических бомбах, дает возможность вычислить энергию (теплоту) образования данных соединений, а отсюда и энергию отдельных химических связей.
Теплоты образования изомеров. Для теплот сгорания органических веществ еще не найдено общего выражения для всех отдельных закономерностей, наблюдаемых для разных классов органических соединений, но в пределах одного гомологического ряда имеются закономерности, весьма точно подтверждающиеся результатами опытов.
Схема прибора для определения органических веществ. Образующаяся при сгорании органических веществ двуокись углерода поглощается в барботере 10 титрованным раствором щелочи.
Анализ значений теплот сгорания органических веществ позволяет также делать выводы о стабильности их молекул.
Потеря, обусловленная сгоранием органического вещества, не поддается учету.
Так как при сгорании органического вещества выделяется двуокись серы и частично пары серного ангидрида, то процесс нужно вести под тягой. После сжигания смесь переносят в прибор (рис. 29), состоящий из круглодонной колбы, служащей для разложения аммонийных солей и отгонки аммиака, соединенной через каплеуловитель с холодильником. Нижний конец холодильника опущен в приемник с раствором кислоты.
Так, при сгорании органических веществ всегда образуется вода; она и должна быть признана элементарным телом.
Это осветление происходит вследствие сгорания органического вещества, в результате чего мета-морфизованные разности теряют свой характерный запах. Фосфориты эти имеют чаще всего тонкослоистую текстуру, пронизаны мелкими трещинами, становятся более хрупкими, иногда рассыпчатыми, мажущимися породами.
Качество сжигания или полноту сгорания органических веществ было решено контролировать по степени затемнен-ности дымовых газов.

В настоящее время по энтальпиям сгорания органических веществ накоплен очень обширный экспериментальный материал. Однако далеко не весь этот материал следует рассматривать как достаточно достоверный. Можно полностью согласиться с высказанным Россини еще в 1937 г. мнением о том, что все полученные до начала тридцатых годов нашего столетия числовые данные по энтальпиям сгорания органических веществ нельзя считать надежными, несмотря на то что во многих из выполненных в то время работ авторам удавалось достичь очень высокой воспроизводимости (до 0 03 - 0 05 %) результатов калориметрических измерений.
В нижнем пламени 17 происходит сгораний органических веществ, в том числе растворителя. В верхнем пламени 19 наблюдается эмиссия представляющих интерес молекул. Детектор более устойчив при вводе больших концентраций органических веществ.
Остаток, полученный в результате сгорания органического вещества, называется золой.
Накопление вполне надежных данных по энтальпиям сгорания органических веществ стало возможным только начиная с 30 - х годов нашего века.
Представляет собой продукт, получаемый при сгорании органических веществ без доступа воздуха; обладает большой поверхностью, ч го обусловливает его адсорбционную способность в отношении газов и многих растворенных веществ.
Пусть наша задача состоит в определении теплоты сгорания органического вещества. В этом случае, даже при наличии систематических ошибок в измерении подъема температуры в главном периоде, мы получим величину теплоты сгорания исследуемого вещества не искаженной.
Для измерения теплот реакций, особенно теплот сгорания органических веществ, используют прочный герметичный сосуд из нержавеющей стали - так называемую калориметрическую бомбу, в которой сжигают отвешенное количество вещества под давлением кислорода 20 - 40 атм. Вещество поджигают стальной проволокой, через которую пропускают электрический ток; при этом вещество испаряется.
Для количественного поглощения воды, образующейся при сгорании органического вещества, служит U-образная трубка (рис. 43), наполненная безводным зерне-ным хлористым кальцием, предварительно отсеянным от мелких частиц.
Наполненная хлоркальциевая трубка. Для количественного поглощения воды, образующейся при сгорании органического вещества, служит U-образная трубка (рис. 43), наполненная безводным зерненым хлористым кальцием, предварительно отсеянным от мелких частиц.
Для количественного поглощения воды, образующейся при сгорании органического вещества, служит U-образная трубка (рис. 43), наполненная безводным зерне-ньш хлористым кальцием, предварительно отсеянным от мелких частиц.
Графики изменения минерального состава грунтов в результате. В интервале температур 350 - 700 С происходит сгорание органических веществ, продукты окисления которых удаляются о аморфизации глинистых минералов.
В процессе биологического окисления замечательно то, что сгорание органического вещества за счет молекулярного кислорода, которое происходит с большой скоростью при невысокой температуре тела, осуществляется.
Накопленный в настоящее время термохимический материал по энтальпиям сгорания органических веществ и вычисленные на его основе величины стандартных энтальпий образования этих веществ дают возможность вычислить изменение энтальпии во многих реакциях. Однако следует иметь в виду, что даже при условии измерения энтальпий сгорания с очень высокой относительной точностью (например, 0 01 - 0 02 %) вычисленные из этих данных энтальпии соответствующих реакций часто могут быть получены лишь с очень большой величиной относительной погрешности. Погрешность особенно увеличивается в тех случаях, когда тепловой эффект реакции мал.

Наиболее точными измерениями в калориметрии являются определения теплоты сгорания органических веществ и теплоемкости.
Учащимся уже, известны причины образования копоти при сгорании органических веществ. Учитель предлагает им самим объяснить наблюдаемое явление.
Во второй главе книги сжато изложены вопросы измерения энтальпий сгорания органических веществ, содержащих помимо С, Н, О и другие элементы. Эта область калориметрии в настоящее время бурно развивается и совершенствуется.
Калориметрическая установка (калориметр) предназначена для определения теплоты сгорания органических веществ, в том числе углей.
В природе самопроизвольно совершаются медленные процессы, аналогичные как сгоранию органических веществ, полному или неполному, так и сухой перегонке. На поверхности земли при достаточном доступе воздуха остатки растений или животных подвергаются обычно сложным процессам гниения или тления под действием микроорганизмов. Окончательным результатом этих процессов является полное сгорание углерод - и водо-родсодержащих веществ с образованием двуокиси углерода и воды; азот частью выделяется в свободном виде или в виде а.
В природе самопроизвольно совершаются медленные процессы, аналогичные как сгоранию органических веществ, полному или неполному, так и сухой перегонке.
Сжигание необходимо производить под тягой, так как при сгорании органического вещества выделяется сернистый газ и частично пары серного ангидрида.
Следует отметить две основные причины несовершенства старых данных по энтальпиям сгорания органических веществ. Первая из них - это недостаточная степень чистоты объектов исследования. Во многих работах того времени сведения о чистоте исследованных веществ вообще отсутствуют.

Горение древесины представляет собою окисление составных частей ее до углекислого газа СO 2 и воды Н 2 О.

Для осуществления этого процесса необходимо достаточное количество окислителя (кислорода) и нагревание древесины до определенной температуры.

При нагревании без доступа кислорода происходит термическое разложение древесины (пиролиз), в результате чего образуются уголь, газы, вода и летучие органические вещества.

В соответствии с теорией, развитой Г. Ф. Кнорре и другими учеными, горение древесины можно представить следующим образом.

В начале нагревания из древесины испаряется влага. В дальнейшем происходит термическое разложение составных частей ее. Составные части древесины в значительной степени окислены, поэтому они распадаются при невысокой температуре. Образование летучих веществ, достигает максимума (до 85% к весу начинается около 160° и сухой древесины) при 300°.

Продукты первичного распада древесины в результате сложных окислительных и восстановительных процессов переходят, в газообразное состояние, в котором они могут легко перемешиваться с молекулами кислорода, образуя горючую смесь, воспламеняющуюся при определенных условиях (избыток кислорода, достаточно высокая температура). В зависимости от качественного состояния древесина воспламеняется при 250-350°.

Газифицированные продукты горят во внешней кромке пламени, внутри же пламени летучие продукты пиролиза древесины превращаются в газообразное состояние.

Свечение пламени вызывается раскаленными частицами углерода, сгорающими в СО 2 во внешней его кромке при избытке кислорода. Наоборот, при недостатке кислорода, когда температура сравнительно невелика, пламя имеет красноватый цвет, при этом за счет несгоревших частиц углерода выделяется значительное количество копоти.

Чем больше подача кислорода, тем выше температура, больше и ярче пламя.

Внешний вид пламени также зависит от состава древесины и в первую очередь от содержания углеводородов и смол. Больше всего смол в сосновых деревьях, и березе, при горении которых образуется густое, яркое пламя. Пламя осины, летучие вещества которой содержат больше окиси углерода и меньше углеводородов, невелико, прозрачно, имеет синеватый оттенок. При горении ольхи, содержащей мало смол, также образуется более короткое и прозрачное пламя.

Последовательность термического разложения опилок при образовании коптильного дыма можно условно представить следующими этапами.

На первом этапе очередная «свежая» частица древесных опилок под воздействием горячей смеси паров и газов и теплового излучения соседних горящих частиц прогревается до 150-160°. В этот период в основном испаряется влага, заметного уменьшения объема частицы не наблюдается.

В последующие этапы температура частицы также повышается, вследствие чего происходит термическое разложение органической массы древесной частицы и воспламенение части газифицированных продуктов пиролиза с выделением тепла; часть же летучих веществ вместе с некоторым количеством несгоревшего углерода (сажи) увлекается конвекционными токами вверх, образуя дым. В конце процесса разложения древесины и выделения летучих соединений заметно уменьшаются размеры частицы.

Уголь (твердый углерод), образовавшийся в процессе термического разложения древесных опилок, нагревается теплом, выделяемым при окислении части летучих соединений и начинает реагировать с углекислотой и кислородом:

C + CO 2 → 2CO

2CO + O 2 → 2CO 2

При этом образуется небольшое, полупрозрачное синеватое пламя горения окиси углерода.

Объем частицы продолжает сокращаться; на заключительном этапе образуется зола. Под действием выделяющегося тепла начинает прогреваться следующая «свежая» частица древесных опилок.

Механизм и химизм сгорания древесины в виде поленьев дров, щепок или кучи опилок одинаков. Имеются отличия в количественной и качественной сторонах процесса собственно горения, т. е. окисления органических соединений кислородом при использовании дров или опилок.

Здесь мы сталкиваемся с понятиями так называемого полного и неполного горения. При полном горении летучие, паро- и газообразные вещества полностью окисляются (или сгорают) до углекислого газа и паров воды.

Примером полного горения может служить реакция окисления одного из компонентов коптильного дыма - метилового спирта СН 3 ОН:

СН 3 ОН + O 2 → CO 2 + 2H 2 O

Аналогично могут протекать реакции, окисления и других органических соединений, возникающих при термическом разложении древесины.

В результате полного горения образуется парогазовая смесь, которая состоит из углекислого газа и паров воды, не содержит коптильных компонентов и не представляет ценности для копчения.

Чтобы получить дым, пригодный для коптильного производства, необходимо создать условия неполного горения древесины. Для этого, например, сверху на дрова помещают слой увлажненных опилок, в результате чего зона и интенсивность горения значительно уменьшаются. При неполном горении летучие органические вещества окисляются лишь частично, а дым насыщается коптильными компонентами.

Глубина окисления продуктов пиролиза древесины зависит от количества кислорода, а также от температуры горения и скорости отвода летучих веществ из зоны горения.

При недостатке кислорода окисление летучих веществ, на пример метилового спирта, протекает по следующей реакции:

2СН 3 ОН + O 2 → 2C + 4H 2 O

Несгоревшие частички углерода, выйдя из зоны пламени, быстро охлаждаются и образуют вместе с другими, не окисленными до конца продуктами разложения древесины дым. Часть их оседает на стенках коптильных камер в виде копоти (сажи). При недостаточно хорошей изоляции коптильных камер на стенках их оседают также сконденсированные парообразные летучие вещества дыма (смола, деготь).

При более глубоком, но также неполном окислении горючих веществ образуется окись углерода:

СН 3 ОН + O 2 → CO + 2H 2 O

Таким образом, количество кислорода - один из самых существенных факторов, влияющих на химический состав дыма, в частности на изменение содержания в нем метилового спирта, формальдегида и муравьиной кислоты. Так, при ограниченном доступе воздуха в зону горения из метилового спирта образуется муравьиный альдегид:

СН 3 ОН + O 2 → CH 2 O + 4H 2 O

При поступлении большего количества воздуха, а, следовательно, и кислорода образовавшийся формальдегид окисляется до муравьиной кислоты:

2СН 2 О + O 2 → 2CHOOH

При избытке воздуха муравьиная кислота полностью окисляется до углекислого газа и воды:

2СНOOH + O 2 → 2CO 2 + 2H 2 O

При горении других продуктов пиролиза в зависимости от степени окисления аналогично образуются органические вещества, влияющие на состав дыма.

От количества кислорода, поступающего в сгорающий слой, зависит также температура горения. В обычных условиях древесина в виде поленьев не может сгорать без пламени, а, следовательно, без выделения тепла. В этом случае окисляется значительно большее количество веществ, образующихся из органической массы древесины, чем при сгорании (тлении) опилок. Поэтому значительная часть летучих веществ при сжигании дров не используется для копчения, а коптильный дым по составу уступает дыму, полученному при медленном сгорании опилок. При засыпке горящих дров влажными опилками увеличивается количество дыма, но и в этом случае дрова расходуются неэкономично.

Температурный режим естественного сгорания (тления) опилок значительно мягче по сравнению со сгоранием дров. При горении угля, оставшегося после выделения летучих веществ, образуется небольшое пламя. Полученное тепло расходуется главным образом на нагревание соседних слоев опилок, которые подвергаются термическому разложению без доступа кислорода, так как воздух оттесняется парами и газами горящего слоя.

Сгорание протекает медленно. Значительная часть продуктов термического разложения не окисляется в пламени, поэтому конвекционными потоками отводится сравнительно много летучих веществ.

Примером неполного сгорания опилок может служить сжигание их при нефорсированной нижней подаче воздуха. В этом случае сгорает полностью только нижний слой опилок. Горячие газы и пары вытесняют воздух и нагревают верхние слои опилок, что приводит к сухой перегонке древесины, в результате которой образуются уголь, газы, вода и органические соединения. При равномерном поступлении свежих опилок сверху горит только нижний слой угля, образующегося в результате сухой перегонки вышележащего слоя. При этом получается дым более насыщенный летучими органическими соединениями.

Лучшим способом получения дыма, богатого коптильными компонентами, является образование его в дымогенераторах, работающих на опилках с подогревом коптильной среды газом, глухим паром или электричеством, и во фрикционных дымогенераторах. В этом случае получается дым с повышенным содержанием летучих органических соединений, что обусловлено низкими температурами образования дыма и незначительным окислением первичных продуктов распада древесины.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Общие сведения о горении

Сущность процесса горения

Одним из первых химических явлений, с которым человечество познакомилось на заре своего существования, было горение. Вначале оно использовалось для приготовления пищи и обогрева, и лишь через тысячелетия человек научился использовать его для преобразования энергии химической реакции в механическую, электрическую и другие виды энергии.


Горение - это химическая реакция окисления, сопровождающаяся выделением большого количества тепла и свечением. В печах, двигателях внутреннего сгорания, на пожарах всегда наблюдается процесс горения, в котором участвуют какие-либо горючие вещества и кислород воздуха. Между ними протекает реакция соединения, в результате которой выделяется тепло и продукты реакции нагреваются до свечения. Так горят нефтепродукты, дерево, торф и многие другие вещества.


Однако процесс горения может сопровождать не только реакции соединения горючего вещества с кислородом воздуха, но и другие химические реакции, связанные со значительным выделением тепла. Водород, фосфор, ацетилен и другие вещества горят, например, в хлоре; медь - в парах серы, магний - в углекислом газе. Сжатый ацетилен хлористый азот и ряд других веществ способны взрываться. В процессе взрыва происходит разложение веществ с выделением тепла и образованием пламени. Таким образом, процесс горения является результатом реакций соединения и разложения веществ.

Условия, способствующие горению

Для возникновения горения необходимы определенные условия: наличие горючей среды (горючее вещество + окислитель) и источника воспламенения. Воздух и горючее вещество составляют систему, способную гореть, а температурные условия обуславливают возможность воспламенения и горения этой системы.


Как известно, основными горючими элементами в природе являются углерод и водород. Они входят в состав почти всех твердых, жидких и газообразных веществ, например, древесины, ископаемых углей, торфа, хлопка, ткани, бумаги и др.


Воспламенение и горение большинства горючих веществ происходит в газовой или паровой фазе. Образование паров и газов у твердых и жидких горючих веществ происходит в результате их нагревания. Твердые горючие вещества, например, сера, стеарин, фосфор, некоторые пластмассы при нагревании плавятся и испаряются. Дерево, торф, каменный уголь при нагревании разлагаются с образованием паров, газов и твердого остатка - угля.


Рассмотрим этот процесс подробнее на примере древесины. При нагревании до 110°С происходит высушивание древесины и незначительные испарения смолы. Слабое разложение начинается при 130°С. Более заметное разложение древесины (изменение цвета) происходит при 150°С и выше. Образующиеся при 150-200°С продукты разложения составляют, в основном, воду и углекислый газ, поэтому гореть не могут.


При температуре выше 200°С начинает разлагаться главная составная часть древесины - клетчатка. Газы, образующиеся при этих температурах, являются горючими, так как они содержат значительное количество окиси углерода-, водорода, углеводородов и паров других органических веществ. Когда концентрация этих продуктов в воздухе станет достаточной, при определенных условиях произойдет их воспламенение.


Все горючие жидкости способны испаряться, и горение их происходит в газовой фазе. Поэтому, когда говорят о горении или воспламенении жидкости, то под этим подразумевают горение или воспламенение ее паров.


Горение всех веществ начинается с их воспламенения. У большинства горючих веществ момент воспламенения характеризуется появлением пламени, а у тех веществ, которые пламенем не горят, - появлением свечения (напала).


Начальный элемент горения, возникающий под действием источников, имеющих более высокую температуру, чем температура самовоспламенения вещества, называется воспламенением.


Некоторые вещества способны без воздействия внешнего источника тепла выделять теплоту и самонагреваться. Процесс самонагревания, заканчивающийся горением, принято называть самовозгоранием.


Самовозгорание - это способность вещества воспламеняться не только при нагревании, но и при комнатной температуре под воздействием химических, микробиологических и физико-химических процессов.


Температура, до которой нужно нагреть горючее вещество, чтобы оно воспламенилось без поднесения к нему источника зажигания, называется температурой самовоспламенения.


Процесс самовоспламенения вещества проходит следующим образом. При нагревании горючего вещества, например, смеси паров бензина с воздухом, можно достигнуть такой температуры, при которой в смеси начинает протекать медленная реакция окисления. Реакция окисления сопровождается выделением тепла, и смесь начинает нагреваться выше той температуры, до которой ее нагрели.


Однако вместе с выделением тепла и повышением температуры смеси происходит теплоотдача от реагирующей смеси в окружающую среду. При малой скорости окисления величина теплоотдачи всегда превышает выделение тепла, поэтому температура смеси после некоторого повышения начинает снижаться и самовоспламенение не происходит. Если смесь нагреть извне до более высокой температуры, то вместе с увеличением скорости реакции увеличивается количество тепла, выделяемого в единицу времени.


При достижении определенной температуры тепловыделение начинает превышать теплоотдачу, и реакция приобретает условия для интенсивного ускорения. В этот момент происходит самовоспламенение вещества. Температура самовоспламенения у горючих веществ разная.



Процесс самовоспламенения, рассмотренный выше, является характерным явлением, присущим всем горючим веществам, в каком бы агрегатном состоянии они не находились. Однако в технике и быту горение веществ возникает вследствие воздействия на них пламени, искр или накаленных предметов.


Температура указанных источников воспламенения всегда выше температуры самовоспламенения горючих веществ, поэтому горение возникает очень быстро. Вещества, способные самовозгораться, делятся на три группы. К первой относятся вещества, способные самовозгораться при контакте с воздухом, ко второй со слабо нагретыми предметами. К третьей группе относятся вещества, которые самовозгораются при контакте с водой.


Например, склонными к самовозгоранию могут быть растительные продукты, древесный уголь, сульфаты железа, бурый уголь, жиры и масла, химические вещества и смеси.


Из растительных продуктов склонны к самовозгоранию сено, солома, клевер, листья, солод, хмель. Особенно подвержены самовозгоранию недосушенные растительные продукты, в которых продолжается жизнедеятельность растительных клеток.


Согласно бактериальной теории, наличие влаги и повышение температуры за счет жизнедеятельности растительных клеток способствует размножению имеющихся в растительных продуктах микроорганизмов. Вследствие плохой теплопроводности растительных продуктов выделяющаяся теплота постепенно накапливается и температура повышается.


При повышенной температуре микроорганизмы погибают и превращаются в пористый уголь, который обладает свойством нагреваться за счет интенсивного окисления и поэтому является следующим, после микроорганизмов, источником выделения тепла. Температура в растительных продуктах поднимается до 300°С, и они самовозгораются.


Древесный, бурый и каменный уголь, торф самовозгораются также за счет интенсивного окисления кислородом воздуха.


Растительные и животные жиры, если они нанесены на измельченные или волокнистые материалы (тряпки, веревки, пакля, рогожа, шерсть, опилки, сажа и др.) обладают способностью самовозгораться.


При смачивании измельченных или волокнистых материалов маслом, оно распределяется по поверхности и при соприкосновении с воздухом, начинает окисляться. Одновременно с окислением в масле происходит процесс полимеризации (соединения нескольких молекул в одну). Как первый, так и второй процессы сопровождаются значительным выделением тепла. Если выделяемое тепло не рассеивается, то температура в промасленном материале поднимается, и может достигнуть температуры самовоспламенения.


Некоторые химические вещества способны самовозгораться при соприкосновении с воздухом. К ним относится фосфор (белый, желтый), фосфористый водород, цинковая пыль, алюминиевая пудра, металлы: рубидий, цезий и др. Все эти вещества способны окисляться на воздухе с выделением тепла, за счет которого реакция ускоряется до самовоспламенения.


Калий, натрий, рубидий, цезий, карбид кальция, карбиды щелочных и щелочно-земельных металлов энергично соединяются с водой, и при взаимодействии выделяют горючие газы, которые, будучи нагреты за счет теплоты реакции, самовозгораются.


При смешении таких окислителей, как сжатый кислород, хлор, бром, фтор, азотная кислота, перекись натрия и бария, марганцевокислый калий, селитра и др., с органическими веществами, происходит процесс самовозгорания этих смесей.


Пожарная опасность веществ и материалов определяется не только их способностью воспламеняться, но и массой других факторов: интенсивностью самого процесса горения и сопутствующих горению явлений (образование дыма, токсичных паров и т.д.), возможностью прекращения этого процесса. Общим показателем пожарной опасности является горючесть.


Согласно этому показателю все вещества и материалы условно делятся на три группы: негорючие, трудногорючие, горючие.


Негорючими считаются вещества и материалы, неспособные к горению в воздухе (около 21 % кислорода). К ним относятся сталь, кирпич, гранит и т.д. Однако было бы ошибкой относить негорючие материалы к безопасным в пожарном отношении. Не горючими, но пожароопасными считаются сильные окислители (азотная и серная кислоты, бром, перекись водорода, перманганаты и др.); вещества, выделяющие горючие газы при нагревании, при реакции с водой, вещества, реагирующие с водой с выделением большого количества тепла, например, негашеная известь.


Трудногорючие - это вещества и материалы, способные гореть в воздухе от источника зажигания, но не способные самостоятельно гореть после его удаления.


Горючие - это вещества и материалы, способные самовозгораться, возгораться от источника зажигания и гореть после его удаления.

ГОРЕНИЕ, сложный физико-химический процесс превращения вещества; развивается в режиме прогрессирующего самоускорения, связанного с лавинообразным накоплением в реагирующей системе тепловой энергии и активных промежуточных частиц - атомов, свободных радикалов и др. Горение используется в энергетике при производстве теплоты, работе транспорта, реактивных двигателей, а также в технологических процессах и осуществляется главным образом в камерах сгорания двигателей, топках, печах. С явлением горения человек имеет дело при пожарах, производстве и использовании взрывчатых веществ.

Развитие представлений о горении связано с именами М. Фарадея (горение свечи), М. В. Ломоносова (соединение веществ с кислородом), горения Шталя (теория флогистона), В. А. Михельсона (теория скорости распространения пламени) и др. В разработку современной теории горения значительный вклад внесли российские учёные Н. Н. Семёнов, Я. Б. Зельдович, Д. А. Франк-Каменецкий и др.

В большинстве случаев в основе горения лежит реакция окисления, в которой в качестве так называемого горючего могут участвовать почти все органические и многие неорганические вещества, в качестве окислителя - кислород, озон, галогены, перхлораты, нитросоединения и пр. Например, наибольшее практическое значение имеют процессы горения углеводородных горючих (природного горючего газа, нефти, углей, торфа и пр.) в присутствии кислорода. В режиме горения происходят также некоторые другие реакции (например, разложения, прямого синтеза из элементов).

В реальных условиях помимо продуктов полного сгорания, не способных к дальнейшему горению (диоксида углерода, воды и пр.), образуются другие химические соединения, называемые продуктами неполного горения, в том числе монооксид углерода, оксиды азота, серы, альдегиды, кислоты, бенз[а]пирен. Именно они обусловливают вредность и токсичность выбросов, загрязняют среду обитания и в итоге создают для современного общества экологические проблемы. Многие специалисты полагают, что за счёт процессов организованного горения, главным образом в энергетике, сопровождающихся образованием диоксида углерода и других парниковых газов, происходит потепление климата. К ухудшению качества среды обитания приводят также лесные и торфяные пожары, пожары на складах, химических предприятиях (в том числе использующих технологии хлорорганического синтеза), в местах добычи и переработки нефти и на других пожаро- и взрывоопасных объектах. Например, при горении трансформаторных жидкостей, твёрдых бытовых отходов, полимерных материалов на основе поливинилхлорида происходит образование диоксинов и других суперэкотоксикантов и загрязнение ими окружающей среды.

Основными характеристиками горения являются теплота сгорания горючего вещества, а также адиабатическая температура (температура, которая теоретически могла бы быть достигнута при полном сгорании вещества без потерь теплоты) и скорость процесса. Химические превращения при горении сопровождаются интенсивным тепло- и массообменом с окружающей средой и характеризуются соответствующими гидро- и газодинамическими закономерностями. При горении происходит излучение света в разных диапазонах длин волн, но, как правило, яркое свечение пламенем наблюдается в видимой области. Полное описание процесса горения можно провести с использованием закономерностей макрокинетики.

Важнейшая особенность процесса горения - способность к распространению в пространстве. Различают дефлаграционное и детонационное горение. В первом случае (дефлаграция) распространение горения осуществляется за счёт теплопроводности путём передачи теплоты от горящего объёма в соседние участки смеси, во втором - зажигание и распространение горения происходит за счёт сжатия вещества ударной волной (горение взрывчатых веществ). В свою очередь, дефлаграционное горение подразделяют на ламинарное и турбулентное.

Обычно линейная скорость горения выражается через скорость перемещения фронта реакции (пламени), массовая скорость горения - как количество горючего, сгорающего в единицу времени. Скорость горения зависит от природы и состава горючей смеси, давления и пр. Например, при ламинарном горении углеводородных воздушных смесей скорость распространения пламени составляет в среднем 0,4-0,8 м/с. Распространение пламени в турбулентном потоке газа приводит к искажению фронта горения, расширению зоны протекания химических реакций, а следовательно, к ускорению горения. На скорость горения влияют степень и масштабы турбулентности.

По агрегатному состоянию окислителя и горючего горение разделяют на гомогенное и гетерогенное. Примером гомогенного горения является горение пламенем горючих газов, паров керосина, бензина, спирта в воздухе. При гетерогенном горении (в том числе тлении - беспламенном горения) реакция происходит на поверхности раздела фаз газ - твёрдое тело (металлы, уголь). Если окислитель и горючее предварительно смешаны между собой, то гомогенное горения происходит в кинетическом режиме. Так как температура горения намного выше температуры кипения жидкостей и температуры возгонки некоторых твёрдых веществ, то их горение протекает в гомогенной смеси, а если горючее и окислитель заранее не смешаны, то в диффузионном режиме. Для газовых систем возможны как кинетический, так и диффузионный режимы горения. Определяющая роль разветвлённого цепного механизма процессов газофазного горения позволяет управлять этими процессами путём варьирования скоростей разветвления и обрыва цепей с помощью химически активных примесей.

Для любого вида горения характерны стадия воспламенения и последующий период устойчивого горения вещества с образованием продуктов полного и неполного горения. Различают два способа теплового воспламенения: самовоспламенение и зажигание. При самовоспламенении процесс происходит во всём объёме горючей смеси. При зажигании (вынужденном воспламенении) нагрев системы или накопление активных центров происходит вблизи источника зажигания (искра, пламя, нагретое тело). Температура воспламенения зависит от давления, состава горючего и прочих параметров и для большинства органических веществ находится в интервале 500-800 К.

Существуют критические предельные параметры горения, и вне этих пределов горения (как самопроизвольно протекающий процесс) невозможно. Этими параметрами для каждой горючей смеси являются соотношение объёмов горючего и окислителя, температура, давление, содержание примесей, в том числе концентрация в горючей смеси флегматизаторов (СО 2 , N 2 , Ar и др.) и ингибиторов (С 2 F 4 Br 2 , CH 2 CI 2 F 2 и др.), и пр. Для газов обычно указывают концентрационные, для жидкостей и твёрдых веществ - температурные пределы горения.

Выяснение законов горения и установление критических параметров воспламенения, развития и прекращения процесса горения - необходимое условие управления процессами горения, используемыми в различных сферах человеческой деятельности, обеспечения пожаро- и взрывобезопасности технологических процессов и объектов.

Лит.: Зельдович Я. Б. Теория горения и детонации газов. М.; Л., 1944; Иост В. Взрывы и горение в газах. М., 1952; Семенов Н. Н. О некоторых проблемах химической кинетики и реакционной способности. М., 1954; Хитрин Л. Н. Физика горения и взрыва. М., 1957; Кнорре Г. Ф. Топочные процессы. 2-е изд. М.; Л., 1959; Гейдон А. Г., Вольфгард Х. Пламя, его структура, излучение и температура. М., 1959; Вильямс Ф. А. Теория горения. М., 1971; Математическая теория горения и взрыва. М., 1980; Lewis В., Elbe G. von. Combustion, flames and explosions of gases. 3rd ed. Orlando, 1987; Франк-Каменецкий Д. А. Диффузия и теплопередача в химической кинетике. 3-е изд. М., 1987; Denisov Е. Т., Azatyan V. V. Inhibition of chain reactions. L., 2000; Исаева Л. К. Пожары и окружающая среда. М., 2001.

1.6. ПРОДУКТЫ ГОРЕНИЯ

Продукты горения – это газообразные, жидкие или твердые вещества, образующиеся в процессе горения. Состав продуктов сгорания зависит от состава горящего вещества и от условий его горения. Органические и неорганические горючие вещества состоят, главным образом, из углерода, кислорода, водорода, серы, фосфора и азота. Из них углерод, водород, сера и фосфор способны окисляться при температуре горения и образовывать продукты горения: СО, CO 2 , SO 2 , P 2 O 5 . Азот при температуре горения не окисляется и выделяется в свободном состоянии, а кислород расходуется на окисление горючих элементов вещества. Все указанные продукты сгорания (за исключение окиси углерода СО) гореть в дальнейшем больше не способны. Они образуются при полном сгорании, то есть при горении, которое протекает при доступе достаточного количества воздуха и при высокой температуре.

При неполном сгорании органических веществ в условиях низких температур и недостатка воздуха образуются более разнообразные продукты – окись углерода, спирты, кетоны, альдегиды, кислоты и другие сложные химические соединения. Они получаются при частичном окислении как самого горючего, так и продуктов его сухой перегонки (пиролиза). Эти продукты образуют едкий и ядовитый дым. Кроме того, продукты неполного горения сами способны гореть и образовывать с воздухом взрывчатые смеси. Такие взрывы бывают при тушении пожаров в подвалах, сушилках и в закрытых помещениях с большим количеством горючего материала. Рассмотрим кратко свойства основных продуктов горения.

Углекислый газ

Углекислый газ или двуокись углерода (СО 2) – продукт полного горения углерода. Не имеет запаха и цвета. Плотность его по отношению к воздуху = 1.52. Плотность углекислого газа при температуре Т = 0 0 С и при нормальном давлении р = 760 миллиметров ртутного столба (мм Hg ) равна 1.96 кг/м 3 (плотность воздуха при этих же условиях равна ρ = 1.29 кг/м 3). Углекислый газ хорошо растворим в воде (при Т = 15 0 С в одном литре воды растворяется один литр газа). Углекислый газ не поддерживает горение веществ, за исключением щелочных и щелочно-земельных металлов. Горение магния, например, происходит в атмосфере углекислого газа по уравнению:

CO 2 +2 Mg = C + 2 MgO .

Токсичность углекислого газа незначительна. Концентрация углекислого газа в воздухе 1.5% безвредна для человека длительное время. При концентрации углекислого газа в воздухе, превышающей 3-4.5%, нахождение в помещении и вдыхание газа в течение получаса опасно для жизни. При температуре Т = 0 0 С и давлении р = 3,6 МПа углекислый газ переходит в жидкое состояние. Температура кипения жидкой углекислоты составляет Т = –78 0 С. При быстром испарении жидкой углекислоты газ охлаждается и переходит в твердое состояние. Как в жидком, так и твердом состоянии, капли и порошки углекислоты применяются для тушения пожаров.

Оксид углерода

Оксид углерода или угарный газ (СО) – продукт неполного сгорания углерода. Этот газ не имеет запаха и цвета, поэтому особо опасен. Относительная плотность = 0.97. Плотность угарного газа при Т = 0 0 С и р = 760 мм Hg составляет 1.25 кг/м 3 . Этот газ легче воздуха и скапливается в верхней части помещения при пожарах. В воде оксид углерода почти не растворяется. Способен гореть и с воздухом образует взрывчатые смеси. Угарный газ при горении дает пламя синего цвета. Угарный газ является очень токсичным. Вдыхание воздуха с концентрацией угарного газа 0.4% смертельно для человека. Стандартные противогазы от угарного газа не защищают, поэтому при пожарах применяются специальные фильтры или кислородные изолирующие приборы.

Сернистый газ

Сернистый газ (SO 2 ) – продукт горения серы и сернистых соединений. Бесцветный газ с характерным резким запахом. Относительная плотность сернистого газа = 2.25. Плотность этого газа при Т = 0 0 С и р = 760 мм Hg составляет 2.9 кг/м 3 , то есть он намного тяжелее воздуха. Сернистый газ хорошо растворяется в воде, например, при температуре Т = 0 0 С в одном литре воды растворяется восемьдесят литров SO 2 , а при Т = 20 0 С – сорок литров. Сернистый газ горение не поддерживает. Действует раздражающим образом на слизистые оболочки дыхательных путей, вследствие чего является очень токсичным.

Дым

При горении многих веществ, кроме рассмотренных выше продуктов сгорания выделяется дым – дисперсная система, состоящая из мельчайших твердых частиц, находящихся во взвешенном состоянии в каком-либо газе. Диаметр частиц дыма составляет 10 -4 –10 -6 см (от 1 до 0.01 мкм). Отметим, что 1 мкм (микрон) равен 10 -6 м или 10 -4 см. Более крупные твердые частицы, образующиеся при горении, быстро оседают в виде копоти и сажи. При горении органических веществ дым содержит твердые частицы сажи, взвешенные в CO 2 , CO , N 2 , SO 2 и других газах. В зависимости от состава и условий горения вещества получаются различные по составу и по цвету дымы. При горении дерева, например, образуется серовато-черный дым, ткани – бурый дым, нефтепродуктов – черный дым, фосфора – белый дым, бумаги, соломы – беловато-желтый дым.

Лучшие статьи по теме