Gm2irk - Образовательный портал
  • Главная
  • Книги
  • Тема урока: "Бензол: электронное строение, физические свойства". Строение молекулы бензола

Тема урока: "Бензол: электронное строение, физические свойства". Строение молекулы бензола

Ароматические УВ (арены) – это УВ, молекулы которых содержат одно или несколько бензольных колец.

Примеры ароматических УВ:

Арены ряда бензола (моноциклические арены)

Общая формула: C n H 2n-6 , n≥6

Простейшим представителем ароматических УВ является бензол, его эмпирическая формула С 6 Н 6 .

Электронное строение молекулы бензола

Общая формула моноциклических аренов C n H 2 n -6 показывает, что они являются ненасыщенными соединениями.

В 1856 г. немецкий химик А.Ф. Кекуле предложил циклическую формулу бензола с сопряженными связями (чередуются простые и двойные связи) - циклогексатриен-1,3,5:

Такая структура молекулы бензола не объясняла многие свойства бензола:

  • для бензола характерны реакции замещения, а не реакции присоединения, свойственные ненасыщенным соединениям. Реакции присоединения возможны, но протекают труднее, чем для ;
  • бензол не вступает в реакции, являющиеся качественными реакциями на непредельные УВ (с бромной водой и раствором КМnО 4).

Проведенные позже электронографические исследования показали, что все связи между атомами углерода в молекуле бензола имеют одинаковую длину 0,140 нм (среднее значение между длиной простой связи С-С 0,154 нм и двойной связи С=С 0,134 нм). Угол между связями у каждого атома углерода равен 120 о. Молекула представляет собой правильный плоский шестиугольник.

Современная теория для объяснения строения молекулы С 6 Н 6 использует представление о гибридизации орбиталей атома .

Атомы углерода в бензоле находятся в состоянии sp 2 -гибридизации. Каждый атом «С» образует три σ-связи (две с атомами углерода и одну с атомом водорода). Все σ-связи находятся в одной плоскости:

Каждый атом углерода имеет один р-электрон, который не участвует в гибридизации. Негибридизованные р-орбитали атомов углерода находятся в плоскости, перпендикулярной плоскости σ-связей. Каждое р-облако перекрывается с двумя соседними р-облаками, и в результате образуется единая сопряженная π-система (вспомните эффект сопряжения р-электронов в молекуле бутадиена-1,3, рассмотренный в теме «Диеновые углеводороды»):

Сочетание шести σ-связей с едиой π-системой называется ароматической связью.

Цикл из шести атомов углерода, связанных ароматической связью, называется бензольным кольцом, или бензольным ядром .

В соответствии с современными представлениями об электронном строении бензола молекулу С 6 Н 6 изображают следующим образом:

Физические свойства бензола

Бензол при обычных условиях - бесцветная жидкость; t o пл = 5,5 о С; t o кип. = 80 о С; имеет характерный запах; не смешивается с водой, хороший растворитель, сильно токсичен.

Химические свойства бензола

Ароматическая связь определяет химические свойства бензола и других ароматических УВ.

6π-электронная система является более устойчивой, чем обычные двухэлектроиные π-связи. Поэтому реакции присоединения менее характерны для ароматических УВ, чем для непредельных УВ. Наиболее характерными для аренов являются реакции замещения.

I . Реакции замещения

1.Галогенирование

2. Нитрование

Реакцию осуществляют смесью и кислот (нитрующая смесь):

3.Сульфирование

4.Алкилирование (замещение атома «Н» на алкильную группу) – реакции Фриделя-Крафтса , образуются гомологи бензола:

Вместо галогеналканов можно использовать алкены (в присутствии катализатора – AlCl 3 или неорганической кислоты):

II . Реакции присоединения

1.Гидрирование

2.Присоединение хлора

III. Реакции окисления

1. Горение

2С 6 Н 6 + 15О 2 → 12СО 2 + 6Н 2 О

2. Неполное окисление (KMnO 4 или K 2 Cr 2 O 7 в кислой среде). Бензольное кольцо устойчиво к действию окислителей. Реакция не происходит.

Получение бензола

В промышленности:

1) переработка нефти и угля;

2) дегидрирование циклогексана:

3) дегидроциклизация (ароматизация) гексана:

В лаборатории:

Сплавление солей бензойной кислоты со :

Изомерия и номенклатура гомологов бензола

Любой гомолог бензола имеет боковую цепь, т.е. алкильные радикалы, связанные с бензольным ядром. Первый гомолог бензола представляет собой бензольное ядро, связанное с метильным радикалом:

Толуол не имеет изомеров, поскольку все положения в бензольном ядре равноценны.

Для последующих гомологов бензола возможен один вид изомерии – изомерия боковой цепи, которая может быть двух видов:

1) изомерия числа и строения заместителей;

2) изомерия положения заместителей.

Физические свойства толуола

Толуол - бесцветная жидкость с характерным запахом, не растворимая в воде, хорошо растворяется в органических растворителях. Толуол менее токсичен, чем бензол.

Химические свойства толуола

I . Реакции замещения

1.Реакции с участием бензольного кольца

Метилбензол вступает во все реакции замещения, в которых участвует бензол, и проявляет при этом более высокую реакционную способность, реакции протекают с большей скоростью.

Метильный радикал, содержащийся в молекуле толуола, является заместителем рода, поэтому в результате реакций замещения в бензольном ядре получаются орто- и пара-производные толуола или при избытке реагента - трипроизводные общей формулы:

а) галогенирование

При дальнейшем хлорировании можно получить дихлорметилбензол и трихлорметилбензол:

II . Реакции присоединения

Гидрирование

III. Реакции окисления

1.Горение
C 6 H 5 CH 3 + 9O 2 → 7CO 2 + 4H 2 O

2. Неполное окисление

В отличие от бензола его гомологи окисляются некоторыми окислителями; при этом окислению подвергается боковая цепь, в случае толуола – метильная группа. Мягкие окислители типа MnO 2 окисляют его до альдегидной группы, более сильные окислители (KMnO 4) вызывают дальнейшее окисление до кислоты:

Любой гомолог бензола с одной боковой цепью окисляется сильным окислителем типа KMnO4 в бензойную кислоту, т.е. происходит разрыв боковой цепи с окислением отщепившейся части ее до СО 2 ; например:

При наличии нескольких боковых цепей каждая из них окисляется до карбоксильной группы и в результате образуются многоосновные кислоты, например:

Получение толуола:

В промышленности:

1) переработка нефти и угля;

2) дегидрирование метилциклогексана:

3) дегидроциклизация гептана:

В лаборатории:

1) алкилирование по Фриделю-Крафтсу;

2) реакция Вюрца-Фиттига (взаимодействие натрия со смесью галогенбензола и галогеналкана).

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по курсу органической химии

«АРОМАТИЧЕСКИЕ УГЛЕВОДОРОДЫ »

Ростов-на-Дону

Методические указания по курсу органической химии «Ароматические углеводороды». - Ростов н/Д: Рост. гос. строит. ун-т, 2007. - 12 с.

Излагаются теоретические положения по теме “Ароматические углеводороды”. Дается определение ароматическим углеводородам, а также понятию “ароматичности”. Описывается строение молекулы бензола. Рассматривается номенклатура и изомерия ароматических соединений с одним бензольным ядром. Приведены основные методы получения аренов, также рассмотрены физические и химические свойства ароматических углеводородов.

Рассчитано на студентов I и II курсов дневной и заочной форм обучения специальностей ПСМ, ЗЧС, ССП, БТП и АС.

Составители: канд. хим. наук, доц.

М.Н. Мицкая,

канд. хим. наук, ассист.

Е.А. Левинская

Рецензент: канд. хим. наук, доц.

Л.М. Астахова

© Ростовский государственный

строительный университет, 2007

Ароматические соединения (арены) - органические соединения с плоской циклической структурой, в которой все углеродные атомы создают единую делокализованную π-электронную систему, содержа­щую (4n+2) π-электронов.

К ароматическим соединениям относятся прежде всего бензол С 6 Н 6 и его многочисленные гомологи и производные. Ароматические соединения могут содержать в молекуле одно или не­сколько бензольных ядер (многоядерные ароматические соединения). Но мы рассмотрим ароматические соединения с одним бензольным ядром.

Строение молекулы бензола

Бензол обнаружен М. Фарадеем в 1825 г. в светильном (кок­совом) газе, а строение молекулы бензола чаще всего выражают формулой, пред­ложенной немецким химиком А. Кекуле (1865)

Согласно современным представлениям молекула бензола имеет строение плоского шестиугольника, стороны которого равны между собой и составляют 0,14 нм. Это расстояние является средним значе­нием между величинами 0,154 нм (длина одинарной связи) и 0,134 нм (длина двойной связи). Не только углеродные атомы, но и связанные с ними шесть атомов водорода лежат в одной плоскости. Углы, образо­ванные связями Н-С-С и С-С-С, равны 120°:

Все углеродные атомы в молекуле бензола находятся в состоянии sр 2 -гибридизации. Каждый из них связан тремя своими гибридными орбиталями с двумя такими же орбиталями двух соседних углеродных атомов и одной орбиталью атома Н, образуя три σ-связи (см. рисунок). Четвертая, негибридизованная 2р-орбиталь атома углерода, ось которой перпендикулярна плоскости бензольного кольца, перекрывается с подобными орбиталями двух со­седних углеродных атомов, расположенных справа и слева.


Схема образования σ-связей и π-связей в молекуле бензола

Такое перекрывание происходит над и под плоскостью бензольного кольца. В результа­те образуется единая замкнутая система π-электронов. В результате такого равномерного пере­крывания 2р-орбиталей всех шести углерод­ных атомов происходит «выравнивание» простых и двойных связей, т.е. в бензольном кольце отсутствуют классические двойные и одинарные связи. Равномерное распределение π-электронной плотности между всеми углеродными атомами, обусловленное π-электронной делокализацией, и является причиной высокой устойчивости молекулы бензола. В настоящее время нет единого способа графического изображения молекулы бензола с учетом его реальных свойств. Но чтобы подчеркнуть выравненность π-электронной плотности в молекуле бензола, прибегают к помощи следующих формул:

Необходимо, однако, помнить, что ни одна из этих формул не отвечает действительному физическому состоянию молекулы, а тем более не может отразить все многообразие ее свойств. Формула Кекуле в насто­ящее время является лишь символом молекулы бензола. Однако ее ши­роко применяют, помня при этом о ее недостатках.

Понятие «бензольное кольцо» сразу требует расшифровки. Для этого необходимо хотя бы коротко рассмотреть строение молекулы бензола. Первая структура бензола была предложена в 1865 г. немецким ученым А. Кекуле:



К наиболее важным ароматическим углеводородам относятся бензол С 6 Н 6 и его гомологи: толуол С 6 Н 5 СН з, ксилол С 6 Н 4 (СН з) 2 и др.; нафталин C 10 H 8 , антрацен С 14 Н 10 и их производные.


Атомы углерода в молекуле бензола образуют правильный плоский шестиугольник, хотя обычно его рисуют вытянутым.


Окончательно строение молекулы бензола подтверждено реакцией образования его из ацетилена. В структурной формуле изображается по три одинарных и три двойных чередующихся углерод-углеродных связей. Но такое изображение не передает истинного строения молекулы. В действительности углерод-углеродные связи в бензоле равноценны, и они обладают свойствами, не похожими на свойства ни одинарных, ни двойных связей. Эти особенности объясняются электронным строением молекулы бензола.

Электронное строение бензола

Каждый атом углерода в молекуле бензола находится в состоянии sp 2 -гибридизации. Он связан с двумя соседними атомами углерода и атомом водорода тремя σ-связями. В результате образуется плоский шестиугольник: все шесть атомов углерода и все σ-связи С-С и С-Н лежат в одной плоскости. Электронное облако четвертого электрона (р-электрона), не участвующего в гибридизации, имеет форму гантели и ориентировано перпендикулярно к плоскости бензольного кольца. Такие р-электронные облака соседних атомов углерода перекрываются над и под плоскостью кольца.



В результате шесть р-электронов образуют общее электронное облако и единую химическую связь для всех атомов углерода. Две области большой электронной плоскости расположены по обе стороны плоскости σ-связей.



p-Электронное облако обусловливает сокращение расстояния между атомами углерода. В молекуле бензола они одинаковы и равны 0,14 нм. В случае простой и двойной связи эти расстояния составили бы соответственно 0,154 и 0,134 нм. Значит, в молекуле бензола нет простых и двойных связей. Молекула бензола - устойчивый шестичленный цикл из одинаковых СН-групп, лежащих в одной плоскости. Все связи между атомами углерода в бензоле равноценны, чем и обусловлены характерные свойства бензольного ядра. Наиболее точно это отражает структурная формула бензола в виде правильного шестиугольника с окружностью внутри (I). (Окружность символизирует равноценность связей между атомами углерода.) Однако часто пользуются и формулой Кекуле с указанием двойных связей (II):



Бензольное ядро обладает определенной совокупностью свойств, которую принято называть ароматичностью.

Гомологический ряд, изомерия, номенклатура

Условно арены можно разделить на два ряда. К первому относят производные бензола (например, толуол или дифенил), ко второму - конденсированные (полиядерные) арены (простейший из них - нафталин):



Гомологический ряд бензола имеет общую формулу С n Н 2 n -6 . Гомологи можно рассматривать как производные бензола, в котором один или несколько атомов водорода замещены различными углеводородными радикалами. Например, С 6 Н 5 -СН 3 - метилбензол или толуол, С 6 Н 4 (СН 3) 2 - диметилбензол или ксилол, С 6 Н 5 -С 2 Н 5 - этилбензол и т.д.



Так как в бензоле все углеродные атомы равноценны, то у первого его гомолога - толуола - изомеры отсутствуют. У второго гомолога - диметилбензола - имеются три изомера, отличающиеся взаимным расположением метильных групп (заместителей). Это орто- (сокращенно о-), или 1,2-изомер, в нем заместители находятся у соседних атомов углерода. Если заместители разделены одним атомом углерода, то это мета- (сокращенно м-) или 1,3-изомер, а если они разделены двумя атомами углерода, то это пара- (сокращенно п-) или 1,4-изомер. В названиях заместители обозначаются буквами (о-, м-, п-) или цифра­ми.



Физические свойства

Первые члены гомологического ряда бензола - бесцветные жидкости со специфическим запахом. Плотность их меньше 1 (легче воды). В воде нерастворимы. Бензол и его гомологи сами являются хорошими растворителями для многих органических веществ. Арены горят коптящим пламенем ввиду высокого содержания углерода в их молекулах.

Химические свойства

Ароматичность определяет химические свойства бензола и его гомологов. Шестиэлектронная π-система является более устойчивой, чем обычные двухэлектронные π-связи. Поэтому реакции присоединения менее характерны для ароматических углеводородов, чем для непредельных углеводородов. Наиболее характерными для аренов являются реакции замещения. Таким образом, ароматические углеводороды по своим химическим свойствам занимают промежуточное положение между предельными и непредельными углеводородами.

I. Реакции замещения

1. Галогенирование (с Cl 2 , Вr 2)


2. Нитрование


3. Сульфирование


4. Алкилирование (образуются гомологи бензола) - реакции Фриделя-Крафтса


Алкилирование бензола происходит также при его взаимодействии с алкенами:



Дегидрированием этилбензола получают стирол (винилбензол):



II. Реакции присоединения

1. Гидрирование


2. Хлорирование


III. Реакции окисления

1. Горение

2С 6 Н 6 + 15O 2 → 12СO 2 + 6Н 2 O

2. Окисление под действием КМnO 4 , К 2 Сr 2 O 7 , HNO 3 и др.

Не происходит химической реакции (сходство с алканами).

Свойства гомологов бензола

В гомологах бензола различают ядро и боковую цепь (алкильные радикалы). По химическим свойствам алкильные радикалы подобны алканам; влияние бензольного ядра на них проявляется в том, что в реакциях замещения всегда участвуют атомы водорода у атома углерода, непосредственно связанного с бензольным ядром, а также в более легкой окисляемости С-Н связей.



Влияние электронодонорного алкильного радикала (например, -СН 3) на бензольное ядро проявляется в повышении эффективных отрицательных зарядов на атомах углерода в орто- и пара-положениях; в результате облегчается замещение связанных с ними атомов водорода. Поэтому гомологи бензола могут образовывать тризамещенные продукты (а бензол обычно образует монозамещенные производные).

Ароматические углеводороды – соединения углерода и водорода, в молекуле которых имеется бензольное кольцо. Важнейшими представителями ароматических углеводородов являются бензол и его гомологи – продукты замещения одного или более атомов водорода в молекуле бензола на углеводородные остатки.

Строение молекулы бензола

Первое ароматическое соединение – бензол – было открыто в 1825 г. М. Фарадеем. Была установлена его молекулярная формула – С 6 Н 6. Если сравнить его состав с составом предельного углеводорода, содержащего такое же количество атомов углерода, — гексаном (С 6 Н 14), то можно заметить, что бензол содержит на восемь атомов водорода меньше. Как известно, к уменьшению количества атомов водорода в молекуле углеводорода приводит появление кратных связей и циклов. В 1865 г. Ф. Кекуле предложил его структурную формулу как циклогексантриена – 1, 3, 5.


Таким образом, молекула, соответствующая формуле Кекуле , содержит двойные связи, следовательно, бензол должен иметь ненасыщенный характер, т. е. легко вступать в реакции присоединения: гидрирования, бромирования, гидратации и т. д.

Однако данные многочисленных экспериментов показали, что бензол вступает в реакции присоединения только в жестких условиях (при высоких температурах и освещении), устойчив к окислению. Наиболее характерными для него являются реакции замещения, следовательно, бензол по характеру ближе к придельным углеводородам.

Пытаясь объяснить эти несоответствия, многие ученые предлагали различные варианты структуры бензол. Окончательно строение молекулы бензола было подтверждено реакцией его образования из ацетилена. В действительности углерод — углеродные связи в бензоле равноценны, и их свойства не похожи на свойства ни одинарных, ни двойных связей.

В настоящее время бензол обозначают или формулой Кекуле, или шестиугольником, в котором изображают окружность.

Так в чем же особенность структуры бензола? На основании данных исследователей и расчетов сделан вывод о том, что все шесть углеродных атомов находятся в состоянии sp 2 -гибридизации и лежат в одной плоскости. Негибридизированные p -орбитали атомов углерода, составляющие двойные связи (формула Кекуле), перпендикулярны плоскости кольца и параллельны друг другу.

Они перекрываются между собой, образуя единую π-систему. Таким образом, система чередующихся двойных связей, изображенных в формуле Кекуле, является циклической системой сопряженных, перекрывающихся между собой -связей. Эта система представляет собой две тороидальные (похожие на бублик) области электронной плотности, лежащие по обе стороны бензольного кольца. Так, изображать бензол в виде правильного шестиугольника с окружностью в центре (π -система) более логично, чем в виде циклогексатриена-1,3,5.

Американский ученый Л. Полинг предложил представлять бензол в виде двух граничных структур, отличающихся распределением электронной плотности и постоянно переходящих друг в друга, т. е. считать его промежуточным соединением, «усреднением» двух структур.

Данные измерения длин связей подтверждают эти предположения. Выяснено, что все С-С связи в бензоле имеют одинаковую длину (0,139 нм). Они несколько короче одинарных С-С связей (0,154 нм) и длиннее двойных (0,132 нм).

Существуют также соединения, молекулы которых содержат несколько циклических структур.

Изомерия и номенклатура

Для гомологов бензола характерна изомерия положения нескольких заместителей . Простейший гомолог бензола - толуол (метилбензол) — не имеет таких изомеров; следующий гомолог представлен в виде четырех изомеров:


Основой названия ароматического углеводорода с небольшими заместителями является слово бензол . Атомы в ароматическом кольце нумеруют, начиная от старшего заместителя к младшему:


По старой номенклатуре положения 2 и 6 называют ортоположениями , 4 - пара- , а 3 и 5 - метаположениями.

Физические свойства
Бензол и его простейшие гомологи в обычных условиях весьма токсичные жидкости с характерным неприятным запахом. Они плохо растворяются в воде, но хорошо - в органических растворителях.

Химические свойства бензола

Реакции замещения . Ароматические углеводороды вступают в реакции замещения.
1. Бромирование. При реакции с бромом в присутствии катализатора, бромида железа (ΙΙΙ), один из атомов водорода в бензольном кольце может замещаться на атом брома:

2. Нитрирование бензола и его гомологов . При взаимодействии ароматического углеводорода с азотной кислотой в присутствии серной (смесь серной и азотной кислот называют нитрующей смесью) происходит замещение атома водорода на нитрогруппу -NO 2:

Восстановлением образовавшегося в этой реакции нитробензола получают анилин — вещество, которое применяется для получения анилиновых красителей:

Эта реакция носит имя русского химика Зинина.
Реакции присоединения. Ароматические соединения могут вступать и в реакции присоединения к бензольному кольцу. При этом образуются циклогексан или его производные.
1. Гидрирование . Каталитическое гидрирование бензола протекает при более высокой температуре, чем гидрирование алкенов:

2. Хлорирование. Реакция идет при освещении ультрафиолетовым светом и является свободнорадикальной:

Гомологи бензола

Состав их молекул отвечает формуле С n H 2 n-6 . Ближайшие гомологи бензола:

Все следующие за толуолом гомологи бензола имеют изомеры. Изомерия может быть связана как с числом и строением заместителя (1, 2), так и с положением заместителя в бензольном кольце (2, 3, 4). Соединения общей формулы С 8 Н 10:

По старой номенклатуре, употребляемой для указания относительного расположения двух одинаковых или разных заместителей в бензольном кольце, используют приставки орто — (сокращенно о-) – заместители расположены у соседних атомов углерода, мета- (м -) – через один атом углерода и пара — (п -) – заместители друг против друга.
Первые члены гомологического ряда бензола – жидкости со специфическим запахом. Они легче воды. Являются хорошими растворителями.

Гомологи бензола вступают в реакции замещения (бромирование, нитрирование). Толуол окисляется перманганатом при нагревании:

Гомологи бензола используются как растворители, для получения красителей, средств для защиты растений, пластмасс, лекарств.



















ОПРЕДЕЛЕНИЕ

Ароматические углеводороды (арены) - вещества, в молекулах которых содержится одно или несколько бензольных колец.

Общая формула гомологического ряда бензола C n H 2 n -6 . Простейшими представителями ароматических углеводородов являются бензол - C 6 H 6 и толуол - C 6 H 5 -CH 3 . Углеводородные радикалы, полученные из аренов носят названия: C 6 H 5 - — фенил (Ph-) и C 6 H 5 -CH 2 — — бензил.

Первые члены гомологического ряда бензола - бесцветные жидкости со специфическим запахом. Они легче водды и в ней практически нерастворимы. Хорошо растворяются в органических растворителях и сами являются хорошими растворителями.

Электронное строение бензолов

Рассмотрим строение ароматических углеводородов на примере молекулы бензола. Это химическое соединение впервые было выделено из продуктов переработки каменного угля в 1825 году, однако, для того, чтобы установить строение его молекулы потребовалось три десятилетия. В 1865 году немец Ф. А. Кекуле высказал идею о том, что атомы углерода в бензоле соединены не в виде открытой цепи, а замкнуты в цикл (рис. 1). По его представлениям молекула бензола - это замкнутый цикл, состоящий из шести атомов углерода с тремя чередующимися двойными связями. Однако Кекуле так и не смог объяснить ряд особых свойств, присущих бензолу: почему бензол не проявляет склонность к реакциям присоединения (не обесцвечивает бромную воду и перманганат калия) несмотря на наличие двойных связей и т.д.

Рис. 1. Строение молекулы бензола по Кекуле.

Согласно представлениям современной органической химии, молекула бензола является правильным плоским шестиугольником. Все шесть атомов углерода находятся в sp 2 -гибридном состоянии. Каждый атом углерода образует σ - связи с двумя атомами углерода и одним атомом водорода, лежащими в плоскости цикла. Валентные углы между тремя σ - связями равны 120 o .

Каждый атом углерода в молекуле бензола имеет одну негибридизованнуюp - орбиталь. Шесть этих орбиталей располагаются перпендикулярно плоскому σ - скелету и параллельно друг другу. При их взаимном перекрывании образуется единое π-электронное облако, т.е. осуществляется круговая делокализация электронов. Наибольшая π-электронная плотность в этой сопряженной системе располагается над плоскостью σ - скелета молекулы и охватывает все шесть атомов углеродного цикла. В результате все связи между атомами углерода в бензоле выравнены и имеют длину 0,139 нм (рис. 2).


Рис. 2. Строение молекулы бензола.

Совокупность свойств бензола называют проявлением ароматического характера, или ароматичности. Явление ароматичности подчиняется правилу Хюккеля, согласно которому ароматические молекулы должны иметь плоский циклический σ - скелет и число обобщенных π-электронов, равное (4n+2), где n = 0, 1, 2, 3 и т.д.

Примеры решения задач

ПРИМЕР 1

Задание Плотность паров вещества 3,482 г/л. Его пиролиз дал 6 г сажи и 5,6 л водорода. Определите формулу этого вещества.
Решение Сажа представляет собой углерод. Найдем количество вещества сажи исходя из условий задачи (молярная масса углерода равна 12 г/моль):

n(C) = m(C) / M(C);

n(C) = 6 / 12 = 0,5 моль.

Рассчитаем количество вещества водорода:

n(H 2) = V(H 2) / V m ;

n(H 2) = 5,6 / 22,4 = 0,25 моль.

Значит, количество вещества одного атома водорода будет равно:

n(H) = 2 × 0,25 = 0,5 моль.

Обозначим количество атомов углерода в молекуле углеводорода за «х», а количество атомов водорода за «у», тогда соотношение этих атомов в молекуле:

х: у = 0,5: 0,5 =1:1.

Тогда простейшая формула углеводорода будет выражаться составом СН. Молекулярная масса молекулы состава СН равна:

М(СН) = 13 г/моль

Найдем молекулярную массу углеводорода исходя из условий задачи:

M (C x H y) = ρ×V m ;

M (C x H y) = 3,482×22,4 = 78 г/моль.

Определим истинную формулу углеводорода:

k= M(C x H y)/ М(СН)= 78/13 =6,

следовательно, коэффициенты «х» и «у» нужно умножить на 6 и тогда формула углеводорода примет вид C 6 H 6 . Это бензол.

Ответ Искомый углеводород имеет состав C 6 H 6 . Это бензол.

Лучшие статьи по теме