Gm2irk - Образовательный портал

Эдс индукции в движущихся проводниках. ЭДС, мощность

И какова ее взаимосвязь с другими параметрами Сразу отметим, несмотря на то, что в повседневной жизни мы все успешно используем электрические приборы, многие законы были выведены опытным путем и приняты за аксиому. Это одна из причин излишнего усложнения определений. К сожалению, даже электродвижущая сила, эта основа электротехники, освещается так, что человеку, незнакомому с электричеством, понять что-либо довольно сложно. Объясним этот вопрос с помощью понятных каждому терминов и примеров.

В проводнике носит название «электрический ток». Как известно, все предметы нашего материального мира состоят из атомов. Для упрощения понимания можно считать, что каждый атом представлен в виде уменьшенной в миллионы раз в центре расположено ядро, а на разном удалении от него по круговым орбитам вращаются электроны.

Посредством какого-либо внешнего воздействия в проводнике, образующем замкнутый контур, создается электродвижущая сила и возникает Воздействие «выбивает» валентные электроны с их орбит в атомах, поэтому образуются свободные электроны и положительно заряженные ионы.

Электродвижущая сила необходима для того, чтобы «заставить» заряды постоянно двигаться по проводнику и элементам цепи в определенном направлении. Без нее ток практически мгновенно угасает. Разобраться в том, что же такое электродвижущая сила, позволит сравнение электричества с водой. Прямой участок трубы - это проводник. Двумя своими сторонами она выходит в водоемы. До тех пор, пока уровни воды в водоемах равны и отсутствует уклон, жидкость, находящаяся в трубе, неподвижна.

Очевидно, заставить ее двигаться можно тремя способами: создать перепад высот (уклоном или количеством жидкости в водоемах) или принудительно прокачивать. Важный момент: если говорить о перепаде высот то подразумевается напряжение. Для ЭДС же движение «принудительно», так как сторонние силы, оказывающие воздействие, непотенциальны.

Любой источник электрического тока обладает ЭДС - той самой силой, которая поддерживает движение заряженных частиц (в приведенной аналогии заставляет воду двигаться). Измеряется в вольтах. Название говорит само за себя: ЭДС характеризует работу приложенных к участку цепи сторонних сил, выполняющих перемещение каждого единичного заряда от одного полюса к другому (между клеммами). Она численно равна отношению работы приложенных сторонних сил к величине перемещаемого заряда.

Косвенно необходимость в источнике ЭДС можно вывести из закона сохранения энергии и свойств проводника с током. В замкнутой цепи работа поля по перемещению зарядов равна нулю. Однако проводник нагревается (причем тем сильнее, чем больший ток по нему проходит в единицу времени). Вывод: в цепи должна присутствовать доля сторонней энергии. Указанные сторонние силы - это магнитное поле в генераторах, постоянно возбуждающее электроны; энергия химических реакций в батареях.

Электродвижущая сила индукции была впервые обнаружена экспериментальным путем в 1831 году Он установил, что в проводнике, пронизываемом линиями напряженности изменяющегося магнитного поля, возникает электрический ток. Воздействие поля сообщает внешним электронам в атомах недостающую им энергию, в результате чего они отрываются и начинают двигаться (появляется ток). Конечно, непосредственного движения частиц не существует (как тут не вспомнить об относительности аксиом электротехники). Скорее, имеет место обмен частицами между ближайшими атомами.

Развиваемая электродвижущая сила - это внутренняя характеристика любого источника питания.


Для поддержаниязаданного значения электрического тока в проводнике требуется какой-то внешний источник энергии, который все время обеспечивал бы нужную разность потенциалов на концах этого проводника. Такими источниками энергии являются так называемые источники электрического тока, обладающие какой-то заданной электродвижущей силой , которая способна создать и длительное время поддерживать разность потенциалов.

Электродвижущая сила или сокращенно ЭДС обозначается латинской буквой Е . Единицей измерения является вольт . Таким образом, чтобы получить непрерывное движение электрического тока в проводнике, нужна электродвижущая сила, т. е. требуется источник электрического тока.

Историческая справка . Первым подобным источником тока в электротехнике являлся "вольтов столб", который был сделан из нескольких медных и цинковых кружков, проложенных коровьей кожей, смоченной в слабом растворе кислоты. Таким образом, самым простым способом получения электродвижущей силы считается химическое взаимодействие ряда веществ и материалов, в результате чего химическая энергия преобразуется в электрическую энергию. Источники питания, в которых подобным методом генерируется электродвижущая сила ЭДС, получили название химических источников тока.

Сегодня химические источники питания - батарейки и все возможные виды аккумуляторов - получили огромное распространение в электронике и электротехнике, а также электроэнергетике.

Также распространены и различные виды генераторов, которые в роли единственного источника, способны запитать электрической энергией промышленные предприятия, дать освещение в города, на фунционирование систем железных дорог, трамваев и метро.

ЭДС действует совершенно одинаково как на химические источники, так и на генераторы. Ее действие заключается в создании разности потенциалов на каждом из зажимов источника питания и поддержании ее в течение всего необходимого времени. Зажимы источника питания называют полюсами. На одном из полюсов всегда создается нехватка электронов, т.е. такой полюс имеет положительный заряд и маркируется «+ », а на другом наоборот создается повышенная концентрация свободных электронов, т.е. этот полюс имеет отрицательный заряд и маркируется знаком « - ».

Источники ЭДС применяются для подключения различных приборов и устройств, являющихся потребителями электрической энергии. С помощью проводов потребители подключаются к полюсам источников тока, так что получается замкнутая электрическая цепь. Разность потенциалов, возникшая в замкнутой электроцепи получило название и обозначают латинской буквой «U». Единица измерения напряжения один вольт . Например, запись U=12 В говорит о том, что напряжение источника ЭДС составляет 12 В.

Для того, чтобы измерить напряжение или ЭДС применяют специальный измерительный прибор - .

При необходимости осуществить правильные измерения ЭДС или напряжения источника питания, вольтметр подсоединяют напрямую к полюсам. При разомкнутой электрической цепи вольтметр будет показывать ЭДС. При замкнутой цепи вольтметр выведит на дисплей значение напряжение на каждом зажиме источника питания. PS: Источник тока всегда развивает большую ЭДС, чем напряжение на зажимах.

Видео урок: ЭДС

Видео урок: Электродвижущая сила от учителя физики

Напряжение на каждом из зажимов источника тока меньше электродвижущей силы на значение величины падения напряжения, имеющее место быть на внутреннем сопротивлении источника питания:


Идеальный источник

У идеальных источников, напряжение на зажимах не зависит от величины потребляемого тока.

Все источники электродвижущей силы обладают характеризующими их параметрами: напряжение холостого хода U хх , ток короткого замыкания I кз и внутреннее сопротивление (для источника постоянного тока R вн ). U хх – это напряжение при токе источника равным нулю. У идеального источника при любом токе U хх =0 . I кз – это ток при напряжении равном нулю. У идеального источника напряжения он бесконечен I кз = ∞ . Внутреннее сопротивление определяется из соотношений . Так как напряжение у идеального источника напряжения постоянно при любом токе ΔU = 0, то его внутреннее сопротивление также имеет нулевые значения.

R вн =ΔU / ΔI = 0;

При положительном напряжении и токе источник шлет свою электрическую энергию в эцепь и работает в режиме генератора. При противоположном движении тока – источник принимает электрическую энергию из цепи и работает в режиме приёмника.

В случае идеального источника тока егот значение, не зависит от велечины напряжения на его зажимах: I = const .

Так как, ток у идеального источника тока неизменен ΔI = 0 , то он имеет внутреннее сопротивление, равное бесконечности.

R вн =ΔU / ΔI = ∞

При положительном напряжении и токе источник шлет в цепь энергию и работает в режиме генератора. При обратном направлении он работает в режиме приёмника.

Реальный источник электродвижущей силы

У реального источника электродвижущей силы напряжение на зажимах снижается при увеличении тока. Такой ВАХ соответствует уравнение для определения напряжения при любом значении токе.

U = U xx - R вн ×I,

Где , вычисляется по формуле

R вн =ΔU / Δ I≠ 0

Его также можно вычислить и через U хх и I кз

R вн =U хх / II кз

Самоиндукция. ЭДС самоиндукции

При подсоединении источника тока в любую замкнутую цепь площадь, ограниченная этой цепью, начинает пронизываться внешними магнитными силовыми линиями. Каждая силовая линия, извне, пересекая проводник, наводя в нем ЭДС самоиндукции.

На концах проводника, а значит, и тока необходимо наличие сторонних сил неэлектрической природы, с помощью которых происходит разделение электрических зарядов .

Сторонними силами называются любые силы, действующие на электрически заряженные частицы в цепи, за исключением электростатических (т. е. кулоновских).

Сторонние силы приводят в движение заряженные частицы внут-ри всех источников тока: в генераторах, на электростанциях, в гальванических элементах, аккумуляторах и т. д.

При замыкании цепи создается электрическое поле во всех про-водниках цепи. Внутри источника тока заряды движутся под действием сторонних сил против кулоновских сил (электроны движут-ся от положительно заряженного электрода к отрицательному), а во всей остальной цепи их приводит а движение электрическое поле (см. рис. выше).

В источниках тока в процессе работы по разделению заряженных частиц происходит превращение разных видов энергии в электричес-кую. По типу преобразованной энергии различают следующие виды электродвижущей силы:

- электростатическая — в электрофорной машине, в которой происходит превращение механической энергии при трении в электрическую;

- термоэлектрическая - в термоэлементе — внутренняя энергия нагретого спая двух проволок, изготовленных из разных металлов, превращается в электрическую;

- фотоэлектрическая — в фотоэлементе. Здесь происходит превращение энергии света в элек-трическую: при освещении некоторых веществ, например, селена, оксида меди (I) , кремния наблюдается потеря отрицательного электрического заряда;

- химическая — в гальванических элементах, аккумуляторах и др. источниках, в которых происходит превращение химической энергии в электрическую.

Электродвижущая сила (ЭДС) — характеристика источников тока. Понятие ЭДС было введено Г. Омом в 1827 г. для цепей постоянного тока. В 1857 г. Кирхгофф определил ЭДС как работу сторонних сил при переносе единичного электрического заряда вдоль замкнутого контура:

ɛ = A ст /q ,

где ɛ — ЭДС источника тока, А ст — работа сторонних сил , q — количество перемещенного заряда.

Электродвижущую силу выражают в вольтах.

Можно говорить об электродвижущей силе на любом участке цепи. Это удельная работа сторонних сил (работа по перемещению единичного заряда) не во всем контуре, а только на данном участке.

Внутреннее сопротивление источника тока.

Пусть имеется простая замкнутая цепь, состоящая из источника тока (например, гальванического элемента, аккумулятора или генератора) и резистора с сопротивлением R . Ток в замкну-той цепи не прерывается нигде, следовательно, oн существует и внутри источника тока. Любой источник представляет собой некоторое сопротивление дли тока. Оно называется внутренним сопротивлением источника тока и обозначается буквой r .

В генераторе r — это сопротивление обмотки, в гальваническом элементе — сопротивление раствора электролита и электродов.

Таким образом, источник тока характеризуется величинами ЭДС и внутреннего сопротивлении, которые определяют его качество. Например, электростатические машины имеют очень большую ЭДС (до десятков тысяч вольт), но при этом их внутреннее сопротивление огромно (до со-тни Мом). Поэтому они непригодны для получения сильных токов. У гальванических элементов ЭДС всего лишь приблизительно 1 В, но зато и внутреннее сопротивление мало (приблизительно 1 Ом и меньше). Это позволяет с их помощью получать токи, измеряемые амперами.

В физике такое понятие, как электродвижущая сила (сокращенно – ЭДС ) используется в качестве основной энергетической характеристики источников тока.

Электродвижущая сила (ЭДС)

Электродвижущая сила (ЭДС ) – способность источника энергии создавать и поддерживать на зажимах разность потенциалов.

ЭДС – измеряется в Вольтах

Напряжение на зажимах источника всегда меньше ЭДС на величину падения напряжения.


Электродвижущая сила

U RH = E – U R0

U RH – напряжение на зажимах источника. Измеряется при замкнутой внешней цепи.

Е – ЭДС – измеряется на заводе изготовителе.

Электродвижущая сила (ЭДС ) представляет собой физическую величину , которая равна частному от деления той работы, которая при перемещении электрического заряда совершается сторонними силами в условиях замкнутой цепи, к самому этому заряду.

Следует заметить, что электродвижущая сила в источнике тока возникает и при отсутствии самого тока, то есть тогда, когда цепь является разомкнутой. Такую ситуацию принято именовать «холостым ходом», а сама величина ЭДС при ней равняется разнице тех потенциалов, которые имеются на зажимах источника тока.

Химическая электродвижущая сила

Химическая электродвижущая сила наличествует в аккумуляторах, гальванических батареях при протекании коррозионных процессов. В зависимости от того, на каком именно принципе построена работа того или иного источника питания, они именуются либо аккумуляторами, либо гальваническими элементами.

Одной из основных отличительных характеристик гальванических элементов является то, что эти источники тока являются, так сказать, одноразовыми. При их функционировании те активные вещества, благодаря которым выделяется электрическая энергия, в результате протекания химических реакций распадаются практически полностью. Именно поэтому если гальванический элемент разряжен полностью, то в качестве источника тока использовать его далее невозможно.

В отличие от гальванических элементов аккумуляторы предполагают многократное использование. Это возможно потому, что те химические реакции, которые в них протекают, имеют обратимый характер.

Электромагнитная электродвижущая сила

Электромагнитная ЭДС возникает при функционировании таких устройств, как динамо-машины, электродвигатели, дроссели, трансформаторы и т.п.

Суть ее состоит в следующем: при помещении проводников в магнитное поле и их перемещении в нем таким образом, чтобы происходило пересечение магнитных силовых линий, происходит наведение ЭДС . Если цепь замкнута, то в ней возникает электрический ток.

В физике описанное выше явление называется электромагнитной индукцией. Электродвижущую силу , которая при этом индуктируется, именуют ЭДС индукции.

Следует заметить, что наведение ЭДС индукции происходит не только в тех случаях, когда в магнитном поле проводник перемещается, но и тогда, когда он остается неподвижным, но при этом осуществляется изменение величины самого магнитного поля.

Фотоэлектрическая электродвижущая сила

Эта разновидность электродвижущей силы возникает тогда, когда наличествует или внешний, или внутренний фотоэффект.

В физике под фотоэффектом (фотоэлектрическим эффектом) подразумевается та группа явлений, которая возникает тогда, когда на вещество воздействует свет, и при этом в нем происходит эмиссия электронов. Это называют внешним фотоэффектом. Если же при этом появляется электродвижущая сила или изменяется электропроводимость вещества, то говорят о внутреннем фотоэффекте.

Сейчас и внешний, и внутренний фотоэффекты очень широко используются для проектирования и производства огромного количества таких приемников светового излучения, которые преобразуют световые сигналы в электрические. Все эти устройства называются фотоэлементами и используются как в технике, так и при проведении разнообразных научных исследований. В частности, именно фотоэлементы используются для того, чтобы производить наиболее объективные оптические измерения.

Электростатическая движущая сила

Что касается этого типа электродвижущей силы , то она, к примеру, возникает при механическом трении, возникающем в электрофорных агрегатах (специальных лабораторных демонстрационных и вспомогательных приборах), она же имеет место быть и в грозовых облаках.

Генераторы Вимшурста (это еще одно название электрофорных машин) для своего функционирования используют такое явление, как электростатическая индукция. При их работе электрические заряды накапливаются на полюсах, в лейденских банках, причем разность потенциалов может достигать очень солидных величин (до нескольких сотен тысяч вольт).

Природа статического электричества заключается в том, что оно возникает тогда, когда из-за потери или приобретения электронов нарушается внутримолекулярное или внутриатомное равновесие.

Пьезоэлектрическая электродвижущая сила

Эта разновидность электродвижущей силы возникает тогда, когда происходит или сдавливание, или растяжение веществ, называемых пьезоэлектриками. Они широко используются в таких конструкциях, как пьезодатчики, кварцевых генераторах, гидрофонах и некоторых другиех.

Именно пьезоэлектрический эффект положен в основу работы пьезоэлектрических датчиков. Сами они относятся к датчикам так называемого генераторного типа. В них входной величиной является прилагаемая сила, а выходной – количество электричества.

Что касается таких устройств, как гидрофоны, то в основу их функционирования заложен принцип так называемого прямого пьезоэлектрического эффекта, который имеют пьезокерамические материалы. Суть его состоит в том, что если на поверхность этих материалов оказывается звуковое давление, то на их электродах возникает разность потенциалов. При этом она пропорциональна величине звукового давления.

Одной из основных сфер применения пьезоэлектрических материалов является производство кварцевых генераторов, имеющих в своей конструкции кварцевые резонаторы. Предназначены такие устройства для того, чтобы получать колебания строго фиксированной частоты, которые стабильны как по времени, так и при изменении температуры, а также имеют совсем невысокий уровень фазовых шумов.

Термоионная электродвижущая сила

Эта разновидность электродвижущей силы возникает тогда, когда с поверхности разогретых электродов происходит термоэмиссия заряженных частиц. Термоионная эмиссия на практике применяется достаточно широко, например, на ней основана работа практически всех радиоламп.

Термоэлектрическая электродвижущая сила

Эта разновидность ЭДС возникает тогда, когда на различных концах разнородных проводников или же просто на различных участках цепи температура распределяется очень неоднородно.

Термоэлектрическая электродвижущая сила используется в таких устройствах, как пирометры, термопары и холодильные машины. Датчики, работа которых основана на этом явлении, называются термоэлектрическими, и являются, по сути дела, термопарами, состоящими из спаянных между собой электродов, изготовленных из разных металлов. Когда эти элементы или нагреваются, или охлаждаются, между ними возникает ЭДС , которая по своей величине пропорциональна изменению температуры.

ЭДС. Численно электродвижущая сила измеряется работой, совершаемой источником электрической энергии при переносе единичного положительного заряда по всей замкнутой цепи. Если источник энергии, совершая работу A , обеспечивает перенос по всей замкнутой цепи заряда q , то его электродвижущая сила (Е ) будет равна

За единицу измерения электродвижущей силы в системе СИ принимается вольт (в). Источник электрической энергии обладает эдс в 1 вольт, если при перемещении по всей замкнутой цепи заряда в 1 кулон совершается работа, равная 1 джоулю. Физическая природа электродвижущих сил в разных источниках весьма различна .

Самоиндукция - возникновение ЭДС индукции в замкнутом проводящем контуре при изменении тока, протекающего по контуру. При изменении тока I в контуре пропорционально меняется и магнитный поток B через поверхность, ограниченную этим контуром. Изменение этого магнитного потока, в силу закона электромагнитной индукции, приводит к возбуждению в этом контуре индуктивной ЭДС E . Это явление и называется самоиндукцией.

Понятие родственно понятию взаимоиндукции, являясь его частным случаем.

Мощность. Мощность – это работа производимая единицу времени.Мощность-это работа производимая в еденицу времени, т.е для переноса заряда в эл. цепи или в замкнутой затрачивается энергия, которая равна А=U*Q так как кол-во электричества равна произведению силы тока, то Q=I*t отсюда следует что A=U*I*t. P=A/t=U*Q/t=U*I=I*t*R=P=U*I(И)

1Вт=1000мВ, 1кВт=1000В, Pr=Pп+Po-формула баланса мощности. Pr-мощность генератора(ЭДС)

Pr=Е*I,Pп=I*U полезная мощность, т.е мощность которая расходуется без потерь. Po=I^2*R-теряемая мощность. Для того что бы цепь функционировала необходимо соблюдать баланс мощности в эл.цепи.

12.Закон Ома для участка цепи.

Сила тока в участке цепи прямо пропорциональна напряжению на концах этого проводника и обратно пропорциональна его сопротивлению:
I = U / R ;

1)U=I*R, 2)R=U/R

13.Закон Ома для полной цепи.

Сила тока в цепи пропорциональна действующей в цепи ЭДС и обратно пропорциональна сумме сопротивлений цепи и внутреннего сопротивления источника.

ЭДС источника напряжения(В), - сила тока в цепи (А), - сопротивление всех внешних элементов цепи(Ом), - внутреннее сопротивление источника напряжения(Ом) .1)E=I(R+r)? 2)R+r=E/I

14.Последовательное, параллельное соединение резисторов, эквивалентное сопротивление. Распределение токов и напряжения.

При последовательном соединении нескольких резисторов конец первого резистора соединяют с началом второго, конец второго - с началом третьего и т. д. При таком соединении по всем элементам последовательной цепи проходит
один и тот же ток I.

Uэ=U1+U2+U3. Следовательно, напряжение U на зажимах источника равно сумме напряжений на каждом из последовательно включенных резисторов.

Rэ=R1+R2+R3, Iэ=I1=I2=I3, Uэ=U1+U2+U3.

При последовательном соединении сопротивление цепи увеличивается.

Параллельное соединение резисторов. Параллельным соединением сопротивлений называется такое соединение, при котором к одному зажиму источника подключаются начала сопротивлений, а к другому зажиму - концы.

Общее сопротивление параллельно включенных сопротивлений определяется по формуле

Общее сопротивление параллельно включенных сопротивлений всегда меньше наименьшего сопротивления, входящего в данное соединение.

при параллельном соединении сопротивлений напряжения на них равны между собой. Uэ=U1=U2=U3 В цепи притекает ток I, а токи I 1 , I 2, I 3 утекают из нее. Так как движущиеся электрические заряды не скапливаются в точке, то очевидно, что суммарный заряд, притекающий к точке разветвления, равен суммарному заряду утекающему от нее:Iэ=I1+I2+I3 Следовательно, третье свойство параллельного соединения может сформулирована так: Величина тока в не разветвленной части цепи равна сумме токов в параллельных ветвях. Для двух парал.резисторов:

Лучшие статьи по теме