Gm2irk - Образовательный портал
  • Главная
  • Книги
  • Классификация белков простые сложные белки. Классификация белков

Классификация белков простые сложные белки. Классификация белков

Классификация белков по строению.

По структурным признакам все белки делятся на две большие группы: простые белки (протеины) и сложные белки (протеиды);

· Простые беки (протеины). Структура их представлена только полипептидной цепью , т.е. они состоят только из аминокислот и делятся на несколько подгрупп. В подгруппы объединяются белки близкие по молекулярной массе, аминокислотному составу, свойствам и функциям . В чистом виде простые белки встречаются редко. Как правило, они входят в состав сложных белков.

· Сложные белки (протеиды) состоят из белкового компонента , представленного каким-либо простым белком, и небелкового компонента , называемого простетической частью . В зависимости от химической природы простетической части сложные белки делятся на подгруппы.

Белки

Протамины хромопротеины

Гистоны нуклеопротеины

Альбумины фосфопротеины

Глобулины гликопротеины

Проламины протеогликаны

Глютелины липопротеины

Протеиноиды металлопротеины

Характеристика простых белков.

Протамины и гистоны имеют наименьшую молекулярную массу , в их составе преобладают диаминокарбоновые АК: аргинин и лизин (20-30%), поэтому обладают резко выраженными основными свойствами (ИЭТ – 9,5-12,0), имеют положительный заряд . Входят в состав сложных белков нуклеопротеинов. В составе нуклеопротеинов выполняют функции: – структурную (участвуют в формировании третичной структуры ДНК) и регуляторную (способны блокировать передачу генетической информации с ДНК на РНК).

Альбумины – белки небольшой молекулярной массы (15000-70000), кислые (ИЭТ 4,7), так как содержат большое количество глутаминовой и аспарагиновой кислот , имеют отрицательный заряд . Высаливаются насыщенным раствором сульфата аммония . Функции альбуминов: транспортная - переносят свободные жирные кислоты, холестерин, гормоны, лекарственные вещества, желчные пигменты, т.е. являются неспецифическими переносчиками.

За счет высокой гидрофильности альбумины поддерживают онкотическое давление крови,

участвуют в поддержании кислотно-основного состояния (КОС) крови.

Глобулины – белки с большей, чем у альбуминов, молекулярной массой (>100000), слабокислые или нейтральные белки (ИЭТ 6-7,3) , так как содержат меньше, чем альбумины, кислых аминокислот. Осаждаются полунасыщенным (50%) раствором сульфата аммония . Входят в состав сложных белков – гликопротеинов и липопротеинов и в их составе выполняют функции: транспортную, защитную (иммуноглобулины), каталитическую, рецепторную и др..

Проламины и глютелины - растительные белки, содержатся в клейковине семян злаковых растений, нерастворимы в воде, растворах солей, кислотах и щелочах, но в отличие от всех других белков, растворяются в 60-80% растворе этанола. Содержат 20-25% глутаминовой кислоты, 10-15% пролина .

В организме человека содержится свыше 50 000 индивидуальных белков, отличающихся первичной структурой, конформацией, строением активного центра и функциями. Однако до настоящего времени нет единой и стройной классификации, учитывающей различные особенности белков. В основе имеющихся классификаций лежат разные признаки. Так белки можно классифицировать:

 по форме белковых молекул (глобулярные – округлые или фибриллярные – нитевидные)

 по молекулярной массе (низкомолекулярные, высокомолекулярные)

 по выполняемым функциям (транспортные, структурные, защитные, регуляторные и др.)

 по локализации в клетке (ядерные, цитоплазматические, лизосомальные и др.)

 по структурным признакам и химическому составу белки делятся на две группы: простые и сложные. Простые белки представлены только полипептидной цепью, состоящей из аминокислот. Сложные белки имеют в своем составе белковую часть и небелковый компонент (простетическую группу). Однако и эта классификация не является идеальной, поскольку в чистом виде простые белки встречаются в организме редко.

Характеристика простых белков.

К простым белкам относят гистоны, протамины, альбумины и глобулины, проламины и глютелины, протеиноиды.

Гистоны - тканевые белки многочисленных организмов, связаны с ДНК хроматина. Это белки небольшой молекулярной массы (11-24 тыс.Да). По электрохимическим свойствам относятся к белкам с резко выраженными основными свойствами (поликатионные белки), ИЭТ у гистонов колеблется от 9 до 12. Гистоны имеют только третичную структуру, сосредоточены в основном в ядрах клеток. Гистоны связаны с ДНК в составе дезоксирибонуклеопротеинов. Связь гистон-ДНК электростатическая, так как гистоны имеют большой положительный заряд, а цепь ДНК-отрицательный. В составе гистонов преобладают диаминомонокарбоновые аминокислоты аргинин, лизин.

Выделяют 5 типов гистонов. Деление основано на ряде признаков, главным из которых является соотношение лизина и аргинина во фракциях, четыре гистона Н2А, Н2В, Н3 и Н4 образуют октамерный белковый комплекс, который называют «нуклеосомный кор». Молекула ДНК «накручивается» на поверхность гистонового октамера, совершая 1,75 оборота (около 146 пар нуклеотидов). Такой комплекс гистоновых белков с ДНК служит основной структурной единицей хроматина, ее называют «нуклеосома» .

Основная функция гистонов - структурная и регуляторная. Структурная функция состоит в том, что гистоны участвуют в стабилизации пространственной структуры ДНК, а следовательно, хроматина и хромосом. Регуляторная функция заключается в способности блокировать передачу генетической информации от ДНК к РНК.

Протамины - своеобразные биологические заменители гистонов, но отличаются от них составом и структурой. Это самые низкомолекулярные белки (М - 4-12 тыс. Да), обладают резко выраженными основными свойствам из-за большого содержания в них аргинина (80%).

Как и гистоны, протамины - поликатионные белки. Они связываются с ДНК в хроматине спермиев и находятся в молоках рыб.

Сальмин - протамин из молоки лосося.

Скумбрин - из молоки скумбрии.

Протамины делают компактной ДНК сперматозоидов, т.е. выполняют как и гистоны, структурную функцию, однако не выполняют регуляторную.

Альбумины и глобулины.

Альбумины (А) и глобулины (Г).

А и Г белки, которые есть во всех тканях. Сыворотка крови наиболее богата этими белками. Содержание альбуминов в ней составляет 40-45 г/л, глобулинов 20-30 г/л, т.е на долю альбуминов приходится более половины белков плазмы крови.

Альбумины -белки относительно небольшой молекулярной массы (15-70 тыс. Да); они имеют отрицательный заряд и кислые свойства, ИЭТ - 4,7, содержат много глутаминовой аминокислоты. Это сильно гидратированые белки, поэтому они осаждаются только при большой концентрации водоотнимающих веществ.

Благодаря высокой гидрофильности, небольшим размерам молекул, значительной концентрации альбумины играют важную роль в поддержании осмотического давления крови. Если концентрация альбуминов ниже 30 г/л, изменяется осмотическое давление крови, что приводит к возникновению отеков. Около 75-80 % осмотического давления крови приходится на долю альбуминов.

Характерным свойством альбуминов является их высокая адсорбционная способность. Они адсорбируют полярные и неполярные молекулы, выполняя транспортную роль. Это неспецифические переносчики они транспортируют гормоны, холестерол, билирубин, лекарственные вещества, ионы кальция. Связывание и перенос длинноцепочных жирных кислот - основная физиологическая функция сывороточных альбуминов. Альбумины синтезируются преимущественно в печени и быстро обновляются, период их полураспада 7 дней.

Глобулины - белки с большей, чем альбумины молекулярной массой. Глобулины слабокислые или нейтральные белки (ИЭТ = 6 – 7,3). Некоторые из глобулинов обладают способностью к специфическому связыванию веществ (специфические переносчики).

Возможно фракционирование белков сыворотки крови на альбумины и глобулины методом высаливания с помощью (NH 4) 2 SO 4 . В насыщенном растворе осаждаются альбумины как более легкая фракция, в полунасыщенном – глобулины.

В клинике широкое распространение получил метод фракционирования белков сыворотки крови путем электрофореза. При электрофоретическом разделении белков сыворотки крови можно выделить 5–7 фракций: Характер и степень изменения белковых фракций сыворотки крови при различных патологических состояниях представляет большой интерес для диагностических целей. Уменьшение альбуминов наблюдается в результате нарушения их синтеза, при дефиците пластического материала, нарушении синтетической функции печени, поражении почек. Содержание глобулинов увеличивается при хронических инфекционных процессах.

Электрофорез белков сыворотки крови.

Проламины и глютелины.

Это группа растительных белков, которые содержатся исключительно в клейковине семян злаковых растений, где выполняют роль запасных белков. Характерной особенностью проламинов является то, что они не растворимы в воде, солевых растворах, щелочах, но растворимы в 70% растворе этанола, в то время как все другие белки выпадают в осадок. Наиболее изучены белки глиадин (пшеница) и зеин (кукуруза). Установлено, что проламины содержат 20-25% глутаминовой кислоты и 10-15 % пролина. Эти белки, например, глиадин, в норме у человека расщепляются, но иногда при рождении фермент, расщепляющий этот белок, отсутствует. Тогда этот белок превращается в продукты распада, обладающие токсическим действием. Развивается заболевание целиакия - непереносимость растительных белков.

Глютелины – тоже растительные белки, не растворимые в воде, в растворах солей, этаноле. Они растворимы в слабых щелочах.

Протеиноиды.

Белки опорных тканей (костей, хрящей, сухожилий, связок), кератины - белки волос, рогов, копыт, коллагены - белки соединительной ткани, эластин - белок эластических волокон.

Все эти белки относятся к фибриллярным, не гидролизуются в желудочно - кишечном тракте. Коллаген составляет 25-33 % от общего количества белка организма взрослого человека или 6 % от массы тела. Пептидная цепь коллагена содержит около 1000 аминокислотных остатков, из которых каждая 3-я аминокислота – глицин, 20% составляют пролин и гидроксипролин, 10% аланин. При формировании вторичной и третичной структур этот белок не может давать типичных a-спиралей, поскольку аминокислоты пролин и оксипролин могут давать только одну водородную связь. Поэтому полипептидная цепь на участке, где находятся эти аминокислоты, легко изгибается, так как не удерживается, как обычно, второй водородной связью.

Эластин – это основной структурный компонент эластических волокон, которые содержатся в тканях обладающих значительной эластичностью (кровеносные сосуды, связки, легкие). Свойства эластичности проявляются высокой растяжимостью этих тканей и быстрым восстановлением исходной формы и размера после снятия нагрузки. В составе эластина содержится много гидрофобных аминокислот (глицина, валина, аланина, лейцина, пролина).

СЛОЖНЫЕ БЕЛКИ

Сложные белки кроме полипептидных цепей содержат в своем составе небелковую (простетическую) часть, представленную различными веществами. В зависимости от химической природы небелковой части выделяют следующие группы сложных белков:

    хромопротеины

    углевод – белковые комплексы

    липид – белковые комплексы

    нуклеопротеины

    фосфопротеины

Белки

– биополимеры, мономерами которых служат α-аминокислоты, связанные между собой пептидными связями.
Выделяют аминокислоты гидрофобные и гидрофильные , которые, в свою очередь, делятся на кислые, основные и нейтральные. Особенностью a-аминокислот является их способность взаимодействовать друг с другом с образованием пептидов.
Выделяют:

  1. дипептиды (карнозин и ансерин , локализующиеся в митохондриях; будучи АО, предотвращающие их набухание);

  2. олигопептиды, включающие до 10 аминокислотных остатков. Например: трипептид глутатион служит одним из главных восстановителей в АРЗ, которая регулирует интенсивность ПОЛ. Вазопрессин и окситоцин — гормоны задней доли гипофиза, включают 9 аминокислот.

  3. Существуют полипептид ы и в зависимости от проявляемых ими свойств их относят к различного класса соединениям. Медики считают, если парентеральное введение полипептида вызывает отторжение (аллергическую реакцию), то его следует считать белком ; если же подобного явления не наблюдается, то термин остаётся прежним (полипептид ). Гормон аденогипофиза АКТГ , влияющий на секрецию ГКС в коре надпочечников, относят к полипептидам (39 аминокислот), а инсулин , состоящий из 51 мономера и способный спровоцировать иммунный ответ, — протеин.

Уровни организации белковой молекулы.

Любой полимер стремится принять более энергетически выгодную конформацию, которая удерживается за счёт образования добавочных связей, что осуществляется с помощью группировок радикалов аминокислот. Принято выделять четыре уровня структурной организации протеинов. Первичная структура – последовательность аминокислот в полипептидной цепи, ковалентно связанных пептидными (амидными ) связями, а соседние радикалы находятся под углом 180 0 (транс-форма). Наличие более 2-х десятков различных протеиногенных аминокислот и способность их связываться в разной последовательности и обусловливает многообразие белков в природе и выполнение ими самых различных функций. Первичная структура протеинов отдельного человека генетически заложена и передаётся от родителей с помощью полинуклеотидов ДНК и РНК. В зависимости от природы радикалов и с помощью специальных белков – шаперонов синтезируемая полипептидная цепь укладывается в пространстве – фолдинг белков .

Вторичная структура белка имеет вид спирали либо β-складчатого слоя. Фибриллярные белки (коллаген, эластин) имеют бета-структуру . Чередование спирализованных и аморфных (неупорядоченных) участков позволяет им сближаться и с помощью шаперонов формируют более плотно упакованную молекулу — третичную структуру.

Объединение нескольких полипептидных цепей в пространстве и создание в функциональном отношении макромолекулярного образования формирует четвертичную структуру белка. Такие мицеллы принято называть олиго- или мультимерами , а их компоненты – субъединицами (протомерами ). Белок с четвертичной структурой обладает биологической активностью только при условии, если все субъединицы его связаны между собой.

Таким образом, любой природный протеин характеризуется уникальной организацией, которая и обеспечивает его физико-химические, биологические и физиологические функции.

Физико-химические свойства.

Белки обладают большими размерами и высокой молекулярной массой, которая колеблется от 6000 – 1000000 Дальтон и выше в зависимости от количества аминокислот и числа протомеров. Молекулы их имеют различные формы: фибриллярную – в ней сохраняется вторичная структура; глобулярную – имеющую более высокую организацию; и смешанную. Растворимость белков зависит от размеров и формы молекулы, от природы радикалов аминокислот. Глобулярные белки хорошо растворимы в воде, а фибриллярные или мало- или не растворимы.

Свойства белковых растворов: имеют низкое осмотическое, но высокое онкотическое давление; высокую вязкость; слабую способность к диффузии; часто мутные; опалесцируют (явление Тиндаля ), — всё это используется при выделении, очистке, изучении нативных белков. В основе разделения компонентов биологической смеси лежит их осаждение. Обратимое осаждение называют высаливанием , развивающимся при действии солей щелочных металлов, солей аммония, разбавленных щелочей и кислот. Его используют для получения чистых фракций, сохранивших нативные структуру и свойства.

Степень ионизации белковой молекулы и её стабильность в растворе определяются рН среды. Значение рН раствора, при котором заряд частицы стремится к нулю, называют изоэлектрической точкой . Такие молекулы способны перемещаться в электрическом поле; скорость движения прямо пропорциональна величине заряда и обратно пропорциональна массе глобулы, что лежит в основе электрофореза для разделения белков сыворотки.

Необратимое осаждение — денатурация . Если реагент проникает вглубь мицеллы и разрушает добавочные связи, уложенная компактно нить разворачивается. Сближающиеся молекулы за счёт высвободившихся группировок склеиваются и выпадают в осадок или флотируют и теряют свои биологические свойства. Денатурирующие факторы: физические (температура выше 40 0 , различные виды излучений: рентгеновское, α-, β-, γ, УФЛ); химические (концентрированные кислоты, щёлочи, соли тяжёлых металлов, мочевину, алкалоиды, некоторые лекарства, яды). Денатурация применяется в асептике и антисептике, а также в биохимических исследованиях.

Белки обладают различными свойствами (Табл. 1.1).

Таблица 1.1

Биологические свойства протеинов

Специфичность обусловливается уникальным аминокислотным составом каждого белка, что детерминировано генетически и обеспечивает адаптацию организма к изменяющимся условиям внешней среды, но с другой стороны — требует учитывать этот факт при переливании крови, трансплантации органов и тканей.
Лигандность способность радикалов аминокислот образовывать связи с различными по природе веществами (лигандами ): углеводами, липидами, нуклеотидами, минеральными соединениями. Если связь прочная, то этот комплекс, называемый сложным белком , выполняет предназначенные для него функции.
Кооперативность характерна для белков, имеющих четвертичную структуру. Гемоглобин состоит из 4-х протомеров, каждый из которых соединён с гемом, способным связываться с кислородом. Но гем первой субъединицы это делает медленно, а каждый последующий – легче.
Полифункциональность свойство одного белка выполнять самые разные функции. Миозин – сократительный протеин мышц обладает также каталитической активностью, гидролизуя при необходимости АТФ. Вышеназванный гемоглобин тоже способен работать ферментом — каталазой.
Комплементарность Все белки так укладываются в пространстве, что формируются участки, комплементарные другим соединениям, что обеспечивает выполнение различных функций (образование комплексов энзим-субстрат, гормон-рецептор, антиген-антитело.

Классификация белков

Выделяют простые белки , состоящие только из аминокислот, и сложные , включающие простетическую группу . Простые белки делятся на глобулярные и фибриллярные , а также в зависимости от аминокислотного состава на основные, кислые, нейтральные . Глобулярные основные белки — протамины и гистоны . Имеют низкую молекулярную массу, за счет наличия аргинина и лизина у них резко выражена основность, благодаря «-» заряду, легко взаимодействуют с полианионами нуклеиновых кислот. Гистоны, связываясь с ДНК, помогают компактно укладываться в ядре и регулировать синтез белка. Эта фракция гетерогенна и при взаимодействии друг с другом, образуют нуклеосомы , на которые наматываются нити ДНК.

К кислым глобулярным белкам принадлежат альбумины и глобулины , содержащиеся во внеклеточных жидкостях (плазме крови, ликворе, лимфе, молоке) и отличающиеся по массе и размерам. Альбумины имеют молекулярную массу 40-70 тыс. Д в отличие от глобулинов (свыше 100 тыс.Д). Первые включают глутаминовую кислоту, что создаёт большой «-» заряд и гидратную оболочку, позволяющую иметь высокую стабильность их раствора. Глобулины — менее кислые белки, поэтому легко высаливаются и являются гетерогенными, с помощью электрофореза делятся на фракции. Способны связываться с различными соединениями (гормонами, витаминами, ядами, лекарствами, ионами), обеспечивая их транспорт. С их помощью стабилизируются важные параметры гомеостаза: рН и онкотическое давление. Выделяют также иммуноглобулины (IgA, IgM, IgD, IgE, IgG), которые служат антителами, а также белковые факторы свёртывания крови.

В клинике используют так называемый белковый коэффициент (БК) , представляющий отношение концентрации альбуминов к концентрации глобулинов:

Его величины колеблются в зависимости от патологических процессов.

Фибриллярные белки делят на две группы: растворимые (актин, миозин, фибриноген) и нерастворимые в воде и водно-солевых растворах (белки опорных — коллаген, эластин, ретикулин и покровных — кератин тканей).

В основе классификации сложных белков лежат особенности строения простетической группы. Металлопротеин ферритин , богатый катионами железа, и локализующийся в клетках системы мононуклеарных фагоцитов (гепатоцитах, спленоцитах, клетках костного мозга), является депо данного металла. Избыток железа приводит к накоплению в тканях – гемосидерина , провоцируя развитие гемосидероза . Металлогликопротеиины — трансферрин и церулоплазмин плазмы крови, служащие транспортными формами ионов железа и меди соответственно, выявлена их антиоксидантная активность. Работа многих ферментов зависит от наличия в молекулах ионов металлов: для ксантиндегидрогеназы — Мо ++ , аргиназы – Mn ++ , а алкогольДГ – Zn ++ .

Фосфопротеины – казеиноген молока, вителлин желтка и овальбумин белка яиц, ихтулин икры рыб. Играют важную роль в развитии зародыша, плода, новорождённого: их аминокислоты необходимы для синтеза собственных белков тканей, а фосфат используется или как звено ФЛ – обязательных структур мембран клеток, или как важнейший компонент макроэргов – источников энергии в генезе различных соединений. За счет фосфорилирования-дефосфорилирования ферменты регулируют свою активность.

В состав нуклеопротеинов входят ДНК и РНК. В качестве апопротеинов выступают гистоны или протамины. Любая хромосома – это комплекс одной молекулы ДНК с многими гистонами. С помощью нуклеосом происходит накручивание нити данного полинуклеотида, что уменьшает его объём.

Гликопротеины включают в свой состав различные углеводы (олигосахариды, ГАГ типа гиалуроновой кислоты, хондроитин-, дерматан-, кератан-, гепарансульфатов). Слизь, богатая гликопротеинами, обладает высокой вязкостью, защищая стенки полых органов от действия раздражителей. Гликопротеины мембран обеспечивают межклеточные контакты, работу рецепторов, в плазмолеммах эритроцитов отвечают за группоспецифичность крови. Антитела (олигосахариды) взаимодействуют с конкретными антигенами. В основе функционирования интерферонов, системы комплемента лежит тот же принцип. Церулоплазмин и трансферрин, транспортирующие в плазме крови ионы меди и железа, являются тоже гликопротеинами. К этому классу белков принадлежат некоторые гормоны аденогипофиза.

Липопротеины в составе простетической группы содержат различные липиды (ТАГ, свободный ХС, его эфиры, ФЛ). Несмотря на присутствие самых различных веществ, принцип строения мицелл ЛП сходен (Рис. 1.1). Внутри данной частицы находится жировая капля, содержащая неполярные липиды: ТАГ и эфиры ХС. Снаружи ядро окружено однослойной мембраной, образованной ФЛ, белком (аполипопротеином) и ХС. Некоторые белки интегральны и не могут быть отделены от липопротеина, а другие способны переноситься от одного комплекса к другому. Полипептидные фрагменты формируют структуру частицы, взаимодействуют с рецепторами на поверхности клеток, определяя, каким тканям он необходим, служат ферментами или их активаторами, модифицирующими ЛП. Методом ультрацентрифугирования выделили следующие типы липопротеинов: ХМ, ЛПОНП, ЛППП, ЛПНП, ЛПВП . Каждый из типов ЛП образуется в разных тканях и обеспечивает транспорт определённых липидов в биологических жидкостях. Молекулы этих протеинов хорошо растворимы в крови, т.к. имеют небольшие размеры и отрицательный заряд на поверхности. Часть ЛП способна легко диффундировать через интиму артерий, питая её. Хиломикроны служат перевозчиками экзогенных липидов, продвигаясь сначала по лимфе, а затем по кровотоку. По мере продвижения ХМ теряют свои липиды, отдавая их клеткам. ЛПОНП служат основными транспортными формами синтезированных в печени липидов, в основном ТАГ, а доставка эндогенного ХС из гепатоцитов к органам и тканям осуществляется ЛПНП . По мере того, как они отдают липиды клеткам–мишеням, плотность их увеличивается (преобразуются в ЛППП ). Катаболическая фаза обмена ХС осуществляется ЛПВП , которые переносят его из тканей в печень, откуда он в составе желчи выводится через ЖКТ из организма.

У хромопротеинов простетической группой может быть вещество, имеющее окраску. Подкласс — гемопротеиды , небелковой частью служит гем . Гемоглобин эритроцитов обеспечивает газообмен, имеет четвертичную структуру, состоит из 4-х разных у эмбриона, плода, ребёнка полипептидных цепей (Раздел IV. Глава 1). В отличие от Hb миоглобин имеет один гем и одну полипептидную цепь, свёрную в глобулу. Сродство миоглобина к кислороду выше, чем у гемоглобина, поэтому он способен принимать газ, депонировать и отдавать митохондриям по мере необходимости. К гемсодержащим белкам относятся каталаза, пероксидаза , являющиеся ферментами АРЗ; цитохромы – компоненты ЭТЦ, отвечающей за основной биоэнергетический процесс в клетках. Среди дегидрогеназ, участников тканевого дыхания, находят флавопротеины – хромопротеины, имеющие жёлтую (flavos — жёлтый) окраску за счёт наличия в них флавоноидов – компонентов ФМН и ФАД. Родопсин – сложный белок, простетической группой которого служит активная форма витамина А – ретинол жёлто-оранжевого цвета. Зрительный пурпур – основное светочувствительное вещество палочек сетчатки глаза, обеспечивает восприятие света в сумерках.

Функции белков

Структурная

(пластическая)

Протеины составляют основу клеточных и органоидных мембран, а также составляют основу ткани (коллаген в соединительной ткани).
Каталитическая Все ферменты – белки — биокатализаторы.
Регуляторная Многие гормоны, секретируемые передней долей гипофиза, паращитовидными железами имеют белковую природу.
Транспортная В плазме крови альбумины обеспечивают перенос ВЖК, билирубина. Трансферрин отвечает за доставку катионов железа.
Дыхательная Мицеллы гемоглобина , локализующиеся в эритроцитах, способны связываться с различными газами, в первую очередь, с кислородом, углекислотой, участвуя непосредственно в газообмене.
Сократительная Специфические белки миоцитов (актин и миозин ) — участники сокращения и расслабления. Подобный эффект в момент расхождения хромосом при митозе проявляет протеин цитоскелета тубулин .
Защитная Белковые факторы свёртывания крови защищают организм от неадекватных кровопотерь. Иммунные белки (γ-глобулины, интерферон, протеины системы комплемента) борются с поступающими в организм чужеродными веществами – антигенами .
Гомеостатическая Вне- и внутриклеточные белки могут удерживать на постоянном уровне рН (буферные системы ) и онкотическое давление среды.
Рецепторная Гликопротеины клеточных и органоидных мембран, локализуясь на наружных участках, воспринимают различные сигналы регуляции.
Зрительная Зрительные сигналы в сетчатке принимает белок – родопсин .
Питательная Альбумины и глобулины плазмы крови служат резервами аминокислот
Белки хромосом (гистоны, протамины ) участвуют в создании баланса экспрессии и репрессии генетической информации.
Энергетическая При голодании или патологических процессах, когда нарушается использование углеводов с энергетической целью (при сахарном диабете) усиливается тканевой протеолиз, продукты которого аминокислоты (кетогенные ), распадаясь, служат источниками энергии.
  • 10. Принципы классификации белков. Классификация по составу и биологическим функциям, примеры представителей отдельных классов.
  • 11. Иммуноглобулины, классы иммуноглобулинов, особенности доменного строения и
  • 13. Классификация и номенклатура ферментов, примеры
  • 1. Оксидоредукпшзы
  • 2.Трансферты
  • 3.Гидролазы
  • 4. Лиазы
  • 5. Изомеразы
  • 6. Лигазы (синтетазы)
  • 15. Кинетика ферментативных реакций. Зависимость скорости ферментативной реакции от температуры, рН среды, концентрации ферментов и субстрата. Уравнение Михаэлиса-Ментен, Кm.
  • 16. Кофакторы ферментов: ионы металлов их роль в ферментативном катализе. Коферменты как производные витаминов. Коферментные функции витаминов в6, рр, в2 на примере трансаминаз и дегидрогеназ.
  • 17. Ингибирование активности ферментов: обратимое (конкурентное и неконкурентное)
  • 1. Конкурентное ингибирование
  • 2. Неконкурентное ингибирование
  • 19. Регуляция каталитической активности ферментов ковалентной модификацией путем фосфорилирования и дефосфорилирования.
  • 20. Ассоциация и диссоциация протомеров на примере протеинкиназы а и ограниченный протеолиз при активации протеолитических ферментов как способы регуляции протеолитической активности ферментов.
  • 21. Изоферменты: происхождение, биологическое значение, примеры. Определение ферментов и изоферментного спектра плазмы крови с целью диагностики заболеваний.
  • 22. Энзимопатии наследственные (фенилкетонурия) и приобретенные (цинга). Применение ферментов для лечения болезней.
  • 23. Общая схема синтеза и распада пиримидиновых нуклеотидов. Регуляция. Оротоцидурия.
  • 24. Общая схема синтеза и распада пуриновых нуклеотидов. Регуляция. Подагра.
  • 27. Гибридизация нуклеиновых кислот. Денатурация и ренативация днк. Гибридизация (днк-днк, днк-рнк). Методы лабораторной диагностики, основанные на гибридизации нуклеиновых кислот.
  • 29. Репликация. Принципы репликации днк. Стадии репликации. Инициация. Белки и ферменты, принимающие участие в формировании репликативной вилки.
  • 30. Элонгация и терминация репликации. Ферменты. Асимметричный синтез днк. Фрагменты Оказаки. Роль днк-лигазы в формировании непрерывной и отстающей цепи.
  • 31. Повреждения и репарация днк. Виды повреждений. Способы репарации. Дефекты репарационных систем и наследственные болезни.
  • 32. Транскрипция. Характеристика компонентов системы синтеза рнк. Структура днк-зависимой рнк-полимеразы: роль субъединиц. Инициация процесса. Элонгация, терминация, транскрипция.
  • 33. Первичный транскрипт и его процессинг. Рибозимы как пример каталитической активности нуклеиновых кислот. Биороль.
  • 35. Сборка полипептидной цепи на рибосоме. Образование инициаторного комплекса. Элонгация: образование пептидной связи (реакция транспептидации). Транслокация. Транслоказа. Терминация.
  • 1. Инициация
  • 2. Элонгация
  • 3. Терминация
  • 36. Особенности синтеза и процессинга секретируемых белков (на примере коллагена и инсулина).
  • 37. Биохимия питания. Основные компоненты пищи человека, их биороль, суточная потребность в них. Незаменимые компоненты пищи.
  • 38. Белковое питание. Биологическая ценность белков. Азотистый баланс. Полноценность белкового питания, нормы белка в питании, белковая недостаточность.
  • 39. Переваривание белков: протеазы жкт, их активация и специфичность, оптимум рН и результат действия. Образование и роль соляной кислоты в желудке. Защита клеток от действия протеаз.
  • 40. Всасывание продуктов переваривания. Транспорт ак в клетки кишечника. Особенности транспорта ак в гепатоцитах. Y-глутамильный цикл. Нарушение переваривания и всасывания ак.
  • 42. Минеральные вещества пищи, макро- и микроэлементы, биологическая роль. Региональные патологии, связанные с недостатком микроэлементов.
  • 43. Биологические мембраны, строение, функции и общие свойства: жидкостность, поперечная ассиметрия, избирательная проницаемость.
  • 1. Структура и свойства липидов мембран
  • 2. Трансмембранная асимметрия липидов
  • 3. Жидкостностъ мембран
  • 4. Функции мембранных липидов
  • 45. Механизм переноса веществ через мембраны: простая диффузия, пассивный симпорт и антипорт, активный транспорт, регулируемые каналы. Мембранные рецепторы.
  • 1. Первично-активный транспорт
  • 2. Вторично-активный транспорт
  • 46. Эндергонические и экзергонические реакции живой клетки. Макроэргические соединения, определение, пример.
  • 4. Сопряжение экзергонических и эндергонических процессов в организме
  • 2. Цепь переноса электронов от nadh и fadh2 на кислород
  • 50. Образование активных форм кислорода(синглетный кислород, пероксид водорода, гидроксильный радикал). Место образоваия, схемы реакций. Физиологическая роль афк.
  • 51. Механизм повреждающего действия активных форм кислорода на клетки (пол, окисление белков и нуклеиновых кислот). Примеры реакций.
  • 1. Строение пируватдегидрогеназного комплекса
  • 2. Окислительное декарбоксилирование пирувата
  • 3. Связь окислительного декарбоксилирования пирувата с цпэ
  • 53. Цикл лимонной кислоты: последовательность реакций и характеристика ферментов. Роль цикла в метаболизме.
  • 57. Аэробный гликолиз. Последовательность реакций до образования пирувата (аэробный гликолиз). Использование глюкозы для синтеза жиров. Энергетический эффект аэробного распада глюкозы.
  • 1. Этапы аэробного гликолиза
  • 2. Реакции аэробного гликолиза
  • 1. Реакции анаэробного гликолиза
  • 60. Гликоген, биологическое значение. Биосинтез и мобилизация гликогена. Регуляция синтеза и распада гликогена. Обмен гликогена в анте- и неонатальном периоде.
  • 61. Наследственные нарушения обмена моносахаридов и дисахаридов: галактоземия, непереносимость фруктозы и дисахаридов, эссенциальная фруктоземия. Гликогенозы и агликогенозы.
  • 62. Липиды. Общая характеристика. Биологическая роль. Классификация липидов. Высшие жирные кислоты, особенности строения. Полиеновые жирные кислоты. Триацилглицеролы.
  • 65. Депонирование и мобилизация жиров в жировой ткани, физиологическая роль этих процессов. Роль инсулина, адреналина и глюкагона в регуляции метобализма жира.
  • 67. Биосинтез жирных кислот. Основные стадии процесса. Регуляция обмена жирных кислот.
  • 69. Холестерин. Пути поступления, использования и выведения из организма. Уровень холестерина в сыворотке крови. Биосинтез холестерина, его этапы. Регуляция синтеза.
  • 74. Непрямое дезаминирование аминокислот. Схема процесса, субстраты, ферменты, кофакторы.
  • 1. Синтез и биологическая роль серотонина
  • 1. Окислительное дезаминирование
  • 2. Непрямое дезаминирование (трансдезаминирование)
  • 3. Неокислительное дезамитровате
  • 1. Метаболизм феиилаланина
  • 2. Особенности обмена тирозина в разных тканях
  • 3. Заболевания, связанные с нарушением обмена фенилаланина и тирозина
  • 1. Классификация гормонов по химическому строению
  • 2. Классификация гормонов по биологическим функциям
  • 3. Передача сигналов через рецепторы, сопряжённые с ионными каналами
  • 1. Гормон роста, пролактин
  • 2. Тиреотропин, лютеинизирующий гормони фолликулостимулирующий гормон
  • 3. Группа гормонов, образующихсяиз проопиомеланокортина
  • 1. Синтез и секреция антидиуретического гормона
  • 2. Механизм действия
  • 3. Несахарный диабет
  • 1. Механизм действия альдостерона
  • 2. Роль системы ренин-ангиотензин- альдостерон в регуляции водно-солевого обмена
  • 3. Восстановление объёма крови при обезвоживании организма
  • 4. Гиперальдостеронтм
  • 1. Синтез и секреция птг
  • 2. Роль паратгормона в регуляции обмена кальция и фосфатов
  • 3. Гиперпаратиреоз
  • 4. Гипопаратиреоз
  • 1. Строение и синтез кальцитриола
  • 2. Механизм действия кальцитриола
  • 3. Рахит
  • 2. Биологические функции инсулина
  • 3. Механизм действия инсулина
  • 1. Изменения метаболизма в печени в абсорбтивном периоде
  • 2. Изменения метаболизма в адипоцитах
  • 3. Изменение метаболизма в мышцах в абсорбтивном периоде
  • 1. Изменения метаболизма в печени
  • 2. Изменения метаболизма в жировой ткани
  • 1. Инсулинзависимый сахарный диабет
  • 2. Инсулинонезависимый сахарный диабет
  • 1. Симптомы сахарного диабета
  • 2. Острые осложнения сахарного диабета. Механизмы развития диабетической комы
  • 3. Поздние осложнения сахарного диабета
  • 1. Основные ферменты микросомальных электронтранспортных цепей
  • 2. Функционирование цитохрома р450
  • 3. Свойства системы микросомального окисления
  • До настоящего времен нет единой и стройной классификации, учитывающей различные параметры белков. В основе имеющихся классификаций обычно лежит один признак. Так, белки можно классифицировать:

    По форме молекул (глобулярные или фибриллярные);

    По молекулярной массе (низкомолекулярные, высокомолекулярные и др.);

    По химическому строению (наличие или отсутствие небелковой части);

    По выполняемым функциям (транспортные, защитные, структурные белки и др.);

    По локализации в клетке (ядерные, цито-плазматические, лизосомальные и др.);

    По локализации в организме (белки крови, печени, сердца и др.);

    По возможности адаптивно регулировать количество данных белков: белки, синтезирующиеся с постоянной скоростью (конститутивные), и белки, синтез которых может усиливаться при воздействии факторов среды (индуцибельные);

    По продолжительности жизни в клетке (от очень быстро обновляющихся белков, с Т 1/2 менее 1 ч, до очень медленно обновляющихся белков, Т 1/2 которых исчисляют неделями и месяцами);

    По схожим участкам первичной структуры и родственным функциям (семейства белков).

    Классификация белков по химическому строению

    1. Простые белки

    Некоторые белки содержат в своём составе только полипептидные цепи, состоящие из аминокислотных остатков. Их называют "простые белки". Примером простых белков - гистоны; в их составе содержится много аминокислотных остатков лизина и аргинина, радикалы которых имеют положительный заряд.

    2. Сложные белки

    Очень многие белки, кроме полипептидных цепей, содержат в своём составе небелковую часть, присоединённую к белку слабыми или ковалентными связями. Небелковая часть может быть представлена ионами металлов, какими-либо органическими молекулами с низкой или высокой молекулярной массой. Такие белки называют "сложные белки". Прочно связанная с белком небелковая часть носит название простетической группы.

    Простетическая группа может быть представлена веществами разной природы. Например, белки, соединённые с гемом, носят название гемопротеины. В состав гемопротеинов, кроме уже рассмотренных выше белков гемоглобинов и миоглобина, входят ферменты - цитохромы, каталаза и пероксидаза. Гем, присоединённый к разным белковым структурам, выполняет в них характерные для каждого из белков функции (например, в составе гемоглобина переносит О 2 , а в составе цитохромов - электроны).

    Белки, соединённые с остатком фосфорной кислоты, называют фосфопротеинами. Фосфорные остатки присоединяются сложноэфирной связью к гидроксильным группам серина, треонина или тирозина при участии ферментов, называемых протеинкиназами.

    В состав белков часто входят углеводные остатки, придающие белкам дополнительную специфичность и часто уменьшающие скорость их ферментативного протеолиза. Такие белки носят название гликопротеинов. Многие белки крови, а также рецепторные белки клеточной поверхности относят к гликопротеинам.

    Белки, функционирующие в комплексе с липидами, называют липопротеинами, а в комплексе с металлами - металлопротеинами.

    Сложный белок, состоящий из белковой части (апопротеин) и небелковой части (простетическая группа), называют "холопротеин".

    Классификация белков по функциям

    1. Ферменты - специализированные белки, ускоряющие течение химических реакций. Благодаря ферментам в клетке скорости химических реакций возрастают в миллионы раз. Так как ферменты, как и любые белки, имеют активный центр, они специфически связывают определённый лиганд (или группу похожих лигандов) и катализируют определённый тип химического превращения данной молекулы. Например, протеолитический фермент трипсин разрушает в белках пептидные связи, образованные карбоксильной группой основных аминокислот - аргинина или лизина. Фермент рибонуклеаза расщепляет фосфоэфирную связь между нуклеотидами в полинуклеотидной цепи.

    2. Регуляторные белки - большую группу белковых гормонов, участвующих в поддержании постоянства внутренней среды организма, которые воздействуют на специфические клетки-мишени. Например, гормон инсулин выделяется в кровь при повышении концентрации глюкозы в крови после еды и, стимулируя использование глюкозы клетками, снижает концентрацию глюкозы до нормы, т.е. восстанавливает гомеостаз.

    Кроме того, к регуляторным относят белки, присоединение которых к другим белкам или иным структурам клетки регулирует их функцию. Например, белок кальмодулин в комплексе с четырьмя ионами Са 2+ может присоединяться к некоторым ферментам, меняя их активность.

    Регуляторные ДНК-связывающие белки, присоединяясь в определённые моменты к специфичным участкам ДНК, могут регулировать скорость считывания генетической информации.

    3. Рецепторные белки Сигнальные молекулы (гормоны, нейромедиаторы) действуют на внутриклеточные процессы через взаимодействие со специфическими белками-рецепторами. Так, гормоны, циркулирующие в крови, находят клетки-мишени и воздействуют на них, специфично связываясь с белками-рецепторами, обычно встроенными в клеточную мембрану. Для гидрофобных регуляторных молекул, проходящих через клеточную мембрану, рецепторы локализуются в цитоплазме клеток.

    4. Транспортные белки Многие белки крови участвуют в переносе специфических лигандов из одного органа к другому. Часто в комплексе с белками переносятся молекулы, плохо растворимые в воде. Так, белок плазмы крови альбумин переносит жирные кислоты и билирубин (продукт распада тема), а гемоглобин эритроцитов участвует в переносе О 2 от лёгких к тканям. Стероидные гормоны переносятся в крови специфическими транспортными белками.

    Транспортные белки участвуют также в переносе гидрофильных веществ через гидрофобные мембраны. Так как транспортные белки обладают свойством специфичности взаимодействия с лигандами, их набор в клеточной мембране определяет, какие гидрофильные молекулы могут пройти в данную клетку. С помощью белков-переносчиков в клетку проникают глюкоза, аминокислоты, ионы и другие молекулы.

    5. Структурные белки Некоторые белки, расположенные определённым образом в тканях, придают им форму, создают опору, определяют механические свойства данной ткани. Например, как уже говорилось выше, главным компонентом хрящей и сухожилий является фибриллярный белок коллаген, имеющий высокую прочность. Другой структурный белок (эластин) благодаря своему уникальному строению обеспечивает определённым тканям свойство растягиваться во всех направлениях (сосуды, лёгкие).

    6. Защитные белки Некоторые белки, в частности иммуноглобулины, обладают способностью узнавать и связывать чужеродные молекулы, вирусные частицы и бактерии, в результате чего происходит их нейтрализация. Кроме того, комплекс чужеродной частицы с иммуноглобулином легко узнаётся и уничтожается клетками иммунной системы.

    Защитными свойствами обладают белки свёртывающей системы крови, например фибриноген, тромбин. Они участвуют в формировании тромба, который закупоривает повреждённый сосуд и препятствует потере крови.

    7. Сократительные белки Некоторые белки при выполнении своих функций наделяют клетку способностью либо сокращаться, либо передвигаться. К таким белкам относят актин и миозин - фибриллярные белки, участвующие в сокращении скелетных мышц. Другой пример таких белков - тубулин, из которого построены клеточные органеллы - микротрубочки. Микротрубочки в период деления клетки регулируют расхождение хроматид. Микротрубочки - важные элементы ресничек и жгутиков, с помощью которых клетки передвигаются.

  • Простые – содержат в составе только аминокислоты (альбумины, глобулины, гистоны, протамины). Подробно эти белки характеризуются ниже.

    Сложные – кроме аминокислот имеются небелковые компоненты (нуклеопротеины, фосфопротеины, металлопротеины, липопротеины, хромопротеины, гликопротеины). Подробно эти белки характеризуются ниже.

    КЛАССИФИКАЦИЯ ПРОСТЫХ БЕЛКОВ

    Структура простых белков представлена только полипептидной цепью (альбумин, инсулин). Однако необходимо понимать, что многие простые белки (например, альбумин) не существуют в „чистом" виде, они всегда связаны с какими-либо небелковыми веществами. Их относят к простым белкам, т.к. связи с небелковой группой слабые.

    А ЛЬБУМИНЫ

    Группа белков плазмы крови с молекулярной массой около 40 кДа, имеют кислые свойства и отрицательный заряд при физиологических рН, т.к. содержат много глутаминовой кислоты. Легко адсорбируют полярные и неполярные молекулы, являются в крови переносчиком многих веществ, в первую очередь билирубина и жирных кислот.

    Г ЛОБУЛИНЫ

    Группа разнообразных белков плазмы крови с молекулярной массой до 100 кДа, слабокислые или нейтральные. Они слабо гидратированы, по сравнению с альбуминами меньше устойчивы в растворе и легче осаждаются, что используется в клинической диагностике в „осадочных" пробах (тимоловая, Вельтмана). Часто содержат углеводные компоненты.

    При обычном электрофорезе разделяются, как минимум, на 4 фракции – α 1 , α 2 , β и γ .

    Так как глобулины включают в себя разнообразные белки, то их функции многочисленны. Часть α -глобулинов обладает антипротеазной активностью, что защищает белки крови от преждевременного разрушения, например, α 1 -антитрипсин , α 1 -антихимотрипсин, α 2 -макроглобулин . Некоторые глобулины способны к связыванию определенных веществ: трансферрин (переносчик ионов железа), церулоплазмин (содержит ионы меди), гаптогло-

    бин (переносчик гемоглобина), гемопексин (переносчик тема). γ -Глобулины являются антителами и обеспечивают иммунную защиту организма.

    Г ИСТОНЫ

    Гистоны – внутриядерные белки массой около 24 кДа. Обладают выраженными основными свойствами, поэтому при физиологических значениях рН заряжены положительно и связываются с дезоксирибонуклеиновой кислотой (ДНК). Существуют 5 типов гистонов – очень богатый лизином (29%) гистон Н1 , другие гистоны Н2а , H2b , НЗ , Н4 богаты лизином и аргинином (в сумме до 25%).

    Радикалы аминокислот в составе гистонов могут быть метилированы, ацетилированы или фосфорилированы. Это изменяет суммарный заряд и другие свойства белков.

    Можно выделить две функции гистонов:

    1. Регулируют активность генома, а

    именно препятствуют транскрипции.

    2. Структурная – стабилизируют

    пространственную структуру

    ДНК.

    Гистоны образуют нуклеосомы

    – октаэдрические структуры, составленные из гистонов Н2а, H2b, НЗ, Н4. Нуклеосомы соединяются между собой через гистон H1. Благодаря такой структуре достигается уменьшение размеров ДНК в 7 раз. Далее нить

    ДНК с нуклеосомами складывается в суперспираль и "суперсуперспираль". Таким образом, гистоны участвуют в плотной упаковке ДНК при формировании хромосом.

    П РОТАМИНЫ

    Это белки массой от 4 кДа до 12 кДа, у ряда организмов (рыбы) они являются заменителями гистонов, есть в спермиях. Отличаются резко увеличенным содержанием аргинина (до 80%). Протамины присутствуют в клетках, не способных к делению. Их функция как у гистонов – структурная.

    К ОЛЛАГЕН

    Фибриллярный белок с уникальной структурой. Обычно содержит моносахаридные (галактоза) и дисахаридные (галактоза-глюкоза) остатки, соединенные с ОН-группами некоторых остатков гидроксилизина. Составляет основу межклеточного вещества соединительной ткани сухожилий, кости, хряща, кожи, но имеется, конечно, и в других тканях.

    Полипептидная цепь коллагена включает 1000 аминокислот и состоит из повторяющегося триплета [Гли-А-В], где А и В – любые, кроме глицина, аминокислоты. В основном это аланин, его доля составляет 11%, доля пролина и гидроксипролина – 21%. Таким образом, на другие аминокислоты приходится всего 33%. Структура пролина и гидроксипролина не позволяет образовать α -спиральную структуру, из-за этого образуется левозакрученная спираль, где на один виток приходится 3 аминокислотных остатка.

    Молекула коллагена построена из 3 полипептидных цепей, сплетенных между собой в плотный жгут – тропоколлаген (длина 300 нм, диаметр 1,6 нм). Полипептидные цепи прочно связаны между собой через ε -аминогруппы остатков лизина. Тропоколлаген формирует крупные коллагеновые фибриллы диаметром 10-300 нм. Поперечная исчерченность фибриллы обусловлена смещением молекул тропоколлагена друг относительно друга на 1/4 их длины.

    В коже фибриллы образуют нерегулярно сплетенную и очень густую сеть – выделанная кожа представляет собой почти чистый коллаген.

    Э ЛАСТИН

    По строению в общих чертах эластин схож с коллагеном. Находится в связках, эластичном слое сосудов. Структурной единицей является тропоэластин с молекулярной массой 72 кДа и длиной 800 аминокислотных остатков. В нем гораздо больше лизина, валина, аланина и меньше гидроксипролина. Отсутствие пролина обуславливает наличие спиральных эластичных участков.

    Характерной особенностью эластина является наличие своеобразной структуры – десмозина , который своими 4-мя группами объединяет белковые цепи в системы, способные растягиваться во всех направлениях.

    α -Аминогруппы и α -карбоксильные группы десмозина включаются в образование пептидных связей одного или нескольких белков.

    Лучшие статьи по теме