Gm2irk - Образовательный портал
  • Главная
  • Биографии
  • В результате ионизации атома образуются. Ионизация атомов в сильных электрических полях

В результате ионизации атома образуются. Ионизация атомов в сильных электрических полях

Энергия ионизации - основная характеристика атома. Именно она определяет природу и прочность которые способен образовывать атом. Восстановительные свойства вещества (простого) также зависят от этой характеристики.

Понятие «энергия ионизации» иногда заменяют понятием «первый ионизационный потенциал» (I1), подразумевая под этим самую маленькую энергию, которая нужна для того, чтобы электрон удалился от свободного атома, когда тот находится в таком состоянии энергии, которое называется низшим.

В частности, для атома водорода так называют энергию, которая требуется для отрыва электрона от протона. Для атомов с несколькими электронами существует понятие второго, третьего и т.д. ионизационных потенциалов.

Энергия ионизации - это сумма, одним слагаемым которой является энергия электрона, а другим - системы.

В химии энергия атома водорода обозначается символом «Ea», а сумму потенциальной энергии системы и энергии электрона можно выразить формулой: Ea= E+T= -Z.e/2.R.

Из этого выражения видно, что стабильность системы напрямую связана с зарядом ядра и расстояния между ним и электроном. Чем меньше это расстояние, чем сильнее заряд ядра, тем сильнее они притягиваются, тем стабильнее и устойчивее система, тем большее количество энергии необходимо потратить на разрыв этой связи.

Очевидно, что по уровню потраченной для разрушения связи энергии можно сравнивать стабильность систем: чем больше энергия, тем стабильнее система.

Энергия ионизации атома - (сила, которая необходима для разрушения связей в атоме водорода) была рассчитана экспериментальным путем. Сегодня ее значение известно точно: 13,6 эВ (электронвольт). Позже ученые, также при помощи целой серии экспериментов, сумели рассчитать энергию, требующуюся для разрушения связи атом - электрон в системах, состоящих из единственного электрона и ядра с зарядом, в два раза превышающим заряд атома водорода. Экпериментальным путем установлено, что в таком случае требуется 54,4 электронвольт.

Известные законы электростатики гласят, что энергия ионизации, необходимой для того, чтобы разорвать связь между противоположенными зарядами (Z и е), при условии, что они расположены на расстоянии R, фиксируется (определяется) таким уравнением: T=Z.e/R.

Такая энергия пропорциональна величине зарядов и, соответственно, находится в обратной зависимости к расстоянию. Это вполне естественно: чем сильнее заряды, тем сильнее силы соединяющие их, тем мощнее усилие требуется приложить, чтобы разрушить связь между ними. Это же касается и расстояния: чем оно меньше, тем сильнее энергия ионизации, тем больше вил придется приложить для разрушения связи.

Это рассуждение объясняет, почему система атомов с сильным зарядом ядра стабильнее и нуждается в большей энергии для отрыва электрона.

Сразу возникает вопрос: "Если только вдвое сильнее, почему энергия ионизации, необходимая для отрыва электрона, увеличивается не в два, а в четыре раза? Почему она равняется удвоенному заряду, взятому в квадрат(54,4/13,6=4)?".

Это противоречие объясняется довольно просто. Если заряды Z и е в системе находятся относительно во взаимном состоянии неподвижности, то энергия (Т) пропорциональна заряду Z, а увеличиваются они пропорционально.

Но в системе, где электрон с зарядом е делает обороты ядра с зарядом Z, а Z усиливается, пропорционально уменьшается радиус вращения R: электрон с большей силой притягивается к ядру.

Вывод очевиден. На энергию ионизации действует заряд ядра, расстояние (по радиусу) от ядра до высшей точки зарядовой плотности внешнего электрона; сила отталкивания между наружными электронами и мера проникающей способности электрона.

  • Глава 2. Теория пробоя Таунсенда
  • 2.1. Первый коэффициент Таунсенда
  • 2.2. Прилипание электронов к атомам и молекулам. Отрыв электронов от отрицательных ионов
  • 2.3. Второй коэффициент Таунсенда
  • 2.4. Электронная лавина
  • 2.5. Условие самостоятельности разряда. Закон Пашена
  • 2.6. Отступления от закона Пашена
  • 2.7. Время разряда
  • Глава 3. Пробой газа в различных частотных диапазонах
  • 3.1. СВЧ-пробой
  • 3.2. ВЧ-пробой
  • 3.3. Оптический пробой
  • Глава 4. Искровой разряд в газах
  • 4.1. Наблюдения за развитием разряда в ионизационной камере
  • 4.2. Схемы развития лавинно-стримерных процессов
  • 4.3. Граница таунсендовского и стримерного разрядов
  • 4.4. Пробой газов в наносекундном диапазоне времени
  • 4.5. Длинная искра, разряд в виде молнии
  • 4.6. Главный разряд
  • Глава 5. Самостоятельные разряды в газах
  • 5.1. Тихий разряд
  • 5.2. Тлеющий разряд
  • 5.3. Дуговой разряд
  • 5.4. Коронный разряд
  • 5.5. Разряд по поверхности твердого диэлектрика
  • 5.6. Зависимость пробивного напряжения газа от межэлектродного расстояния
  • Список литературы к разделу «Пробой газов»
  • Часть II. ПРОБОЙ ТВЕРДЫХ ДИЭЛЕКТРИКОВ
  • Глава 1. Тепловой пробой твердых диэлектриков
  • 1.1. Теория теплового пробоя Вагнера
  • 1.2. Другие теории теплового пробоя
  • Глава. 2. Классические теории электрического пробоя
  • 2.1. Теория Роговского. Разрыв ионной кристаллической решетки
  • 2.2. Разрыв твердого диэлектрика по микротрещине. Теория Горовица
  • 2.3. Теория А. Ф. Иоффе
  • 2.4. Теория А.А. Смурова. Теория электростатической ионизации
  • Глава 3. Квантово-механические теории электрического пробоя неударным механизмом
  • 3.1. Теория Зинера. Теория безэлектродного пробоя
  • 3.2. Теория Фаулера. Пробой электродного происхождения
  • 3.3. Теория Я.И. Френкеля. Теория термической ионизации
  • Глава 4. Теории пробоя твердых диэлектриков вследствие ударной ионизации электронами
  • 4.1. Теории Хиппеля и Фрелиха
  • 4.2. Теории пробоя, основанные на решении кинетического уравнения. Теория Чуенкова
  • 4.3. Некоторые замечания по теориям пробоя, основанных на рассмотрении механизма ударной ионизации электронами
  • Глава 5. Экспериментальные данные, укладывающиеся в представления о пробое твердых диэлектриков ударной ионизацией электронами
  • 5.1. Стадии пробоя твердых диэлектриков
  • 5.2. Развитие разряда в однородном и неоднородном полях в твердых диэлектриках
  • 5.3. Эффект полярности при пробое в неоднородном электрическом поле
  • 5.4. Влияние материала электродов на пробой твердых диэлектриков
  • 5.5. Зависимость времени разряда от толщины диэлектрика. Формирование многолавинно-стримерного механизма разряда
  • Глава 6. Процессы, наблюдаемые в диэлектриках в области сверхсильных электрических полей
  • 6.1. Электрическое упрочнение
  • 6.2. Электронные токи в микронных слоях ЩГК в сильных электрических полях
  • 6.3. Свечение в микронных слоях ЩГК
  • 6.4. Дислокации и трещины в ЩГК перед пробоем
  • Глава 7. Другие теории пробоя твердых диэлектриков
  • 7.2. Энергетический анализ электрической прочности твердых диэлектриков по теории Ю.Н. Вершинина
  • 7.4. Термофлуктуационная теория разрушения твердых диэлектриков электрическим полем В.С. Дмитревского
  • 7.5. Особенности пробоя полимерных диэлектриков. Теория электрического пробоя Артбауэра
  • 7.6. Теория электромеханического пробоя Старка и Гартона
  • Глава 8. Некоторые особенности и закономерности электрического пробоя твердых диэлектриков
  • 8.1. Статистический характер пробоя твердых диэлектриков
  • 8.2. Минимальное пробивное напряжение
  • 8.3. Неполный пробой и последовательный пробой
  • 8.4. Кристаллографические эффекты при пробое кристаллов
  • 8.5. Зависимость электрической прочности от температуры
  • 8.6. Зависимость электрической прочности от времени воздействия напряжения
  • 8.7. Пробой диэлектрических пленок
  • 8.8. Формованные системы металл–диэлектрик–металл (МДМ)
  • 8.9. Заключение по механизму электрического пробоя твердых диэлектриков
  • Глава 9. Электрохимический пробой
  • 9.1. Электрическое старение органической изоляции
  • 9.2. Кратковременное пробивное напряжение
  • 9.3. Старение бумажной изоляции
  • 9.4. Старение неорганических диэлектриков
  • Список литературы к разделу «Пробой твердых диэлектриков»
  • Часть III. ПРОБОЙ ЖИДКИХ ДИЭЛЕКТРИКОВ
  • Глава 1. Пробой жидкостей высокой степени очистки
  • 1.1. Проводимость жидких диэлектриков
  • 1.2. Пробой жидкостей вследствие ударной ионизации электронами
  • 1.3. Пробой жидкостей неударным механизмом
  • Глава 2. Пробой жидких диэлектриков технической очистки
  • 2.1. Влияние влаги
  • 2.2. Влияние механических загрязнений
  • 2.3. Влияние газовых пузырьков
  • 2.4. Теории теплового пробоя жидких диэлектриков
  • 2.5. Вольтолизационная теория пробоя жидких диэлектриков
  • 2.6. Влияние формы и размеров электродов, их материала, состояния поверхности и расстояния между ними на пробой жидкостей
  • 2.7. Развитие разряда и импульсный пробой в жидкостях
  • 2.8. Влияние ультразвука на электрическую прочность
  • 2.9. Внедрение разряда в твердый диэлектрик, погруженный в изолирующую жидкость
  • Список литературы к разделу «Пробой жидких диэлектриков»
  • ОГЛАВЛЕНИЕ
  • Практическое значение этого соотношения заключается в том, что, зная μ , которое сравнительно легко измерить, можно определить D ,

    которое определить непосредственно довольно трудно.

    Амбиполярная диффузия

    В плазме газового разряда диффундируют как электроны, так и ионы. Процесс диффузии представляется следующим. Электроны, обладающие большей подвижностью, быстрее диффундируют, чем ионы. За счет этого создается электрическое поле между электронами и отставшими положительными ионами. Это поле тормозит дальнейшую диффузию электронов, и наоборот – ускоряет диффузию ионов. Когда ионы подтянутся к электронам, указанное электрическое поле ослабевает, и электроны вновь отрываются от ионов. Этот процесс протекает непрерывно. Такая диффузия получила название амбиполярной диффузии, коэффициент которой

    D амб =

    D e μ и + D иμ e

    μ e + μ и

    где D e ,D и

    – коэффициенты диффузии электронов и ионов; μ е , μ и –

    подвижность электронов и ионов.

    Так как D e >> D и и μ е >> μ и , то оказывается, что

    D иμ е≈ D e μ и ,

    поэтому D амб ≈ 2D и . Такая диффузия имеет место, например, в положительном столбе тлеющего разряда.

    1.6. Возбуждение и ионизация атомов и молекул

    Известно, что атом состоит из положительного иона и электронов, число которых определяется номером элемента в периодической таблице Д.И. Менделеева. Электроны в атоме находятся на определенных энергетических уровнях. Если электрон получает извне некоторую энергию, он переходит на более высокий уровень, который называется уровнем возбуждения .

    Обычно электрон находится на уровне возбуждения непродолжительное время, порядка 10-8 с. При получении электроном значительной энергии он удаляется от ядра на столь большое расстояние, что может потерять с ним связь и становится свободным. Наименее связанными с ядром являются валентные электроны, которые находятся на более высоких энергетических уровнях и поэтому легче отрываются от атома. Процесс отрыва электрона от атома называется ионизацией.

    На рис. 1.3 показана энергетическая картина валентного электрона в атоме. Здесь W o – основной уровень электрона, W мст – метастабиль-

    ный уровень, W 1 ,W 2 – уровни возбуждения (первый, второй и т.д.).

    Часть I. Глава 1. Электронные и ионные процессы в газовом разряде

    Рис. 1.3. Энергетическая картина электрона в атоме

    W ′ = 0 – это состояние, когда электрон теряет связь с атомом. Величина W и = W ′ − W o являет-

    ся энергией ионизации. Значения указанных уровней для некоторых газов приведены в табл. 1.3 .

    Метастабильный уровень характеризуется тем, что на него и с него переходы электрона запрещены. Этот уровень заполняется так называемым обменным взаимодействием, когда электрон извне садится на уровень W мст , а избыточный

    электрон покидает атом. Метастабильные уровни играют важную роль в процессах, протекающих в газоразрядной плазме, т.к. на нормальном уровне возбуждения электрон находится в течение 10-8 с, а на метастабильном уровне – 10-2 ÷ 10-3 с.

    Таблица 1.3

    Энергия, эВ

    CО2

    W мст

    Процесс возбуждения атомных частиц определяет и ионизацию посредством так называемого явления диффузии резонансного излучения. Это явление заключается в том, что возбужденный атом, переходя в нормальное состояние, испускает квант света, который возбуждает следующий атом, и так далее. Область диффузии резонансного излучения определяется длиной свободного пробега фотона λ ν , которая зави-

    сит от плотности атомных частиц n . Так, при n= 1016 см-3 λ ν =10-2 ÷ 1

    см. Явление диффузии резонансного излучения также определяется наличием метастабильных уровней.

    Ступенчатая ионизация может происходить по разным схемам: а) первый электрон или фотон производит возбуждение нейтраль-

    ной частицы, а второй электрон или фотон сообщает валентному электрону добавочную энергию, вызывая ионизацию этой нейтральной частицы;

    Часть I. Глава 1. Электронные и ионные процессы в газовом разряде

    денного атома, и в этот момент возбужденный атом переходит в нормальное состояние и излучает квант света, который увеличивает энер-

    в) наконец, два возбужденных атома оказываются вблизи друг друга. При этом один из них переходит в нормальное состояние и испускает квант света, который ионизирует второй атом.

    Следует отметить, что ступенчатая ионизация становится эффективной, когда концентрация быстрых электронов (с энергией, близкой

    к W и ), фотонов и возбужденных атомов достаточно велика. Это име-

    ет место, когда ионизация становится достаточно интенсивной. В свою очередь, падающие на атомы и молекулы фотоны также могут производить возбуждение и ионизацию (прямую или ступенчатую). Источником фотонов в газовом разряде является излучение электронной лавины.

    1.6.1. Возбуждение и ионизация молекул

    Для молекулярных газов необходимо учитывать возможность возбуждения самих молекул, которые в отличие от атомов совершают вращательные и колебательные движения . Эти движения также квантуются. Энергия скачка при вращательном движении составляет 10-3÷ 10-1 эВ, а при колебательном движении – 10-2 ÷ 1 эВ.

    При упругом соударении электрона с атомом электрон теряет не-

    значительную часть своей энергии

    W = 2

    ≈ 10

    − 4 W . При соуда-

    рении электрона с молекулой электрон возбуждает вращательное и колебательное движение молекул. В последнем случае электрон теряет особенно значительную энергию до 10-1 ÷ 1 эВ. Поэтому возбуждение колебательных движений молекул является эффективным механизмом отбора энергии от электрона. При наличии такого механизма ускорение электрона затрудняется, и требуется более сильное поле для того, чтобы электрон мог набрать энергию, достаточную для ионизации. Поэтому для пробоя молекулярного газа требуется более высокое напряжение, чем для пробоя атомарного (инертного) газа при равном межэлектродном расстоянии и равном давлении. Это демонстрируют данные табл. 1.4, где проведено сравнение величин λ t ,S t и U пр атом-

    ных и молекулярных газов при атмосферном давлении и d = 1.3 см.

    Часть I. Глава 1. Электронные и ионные процессы в газовом разряде

    Таблица 1.4

    Характеристика

    Наименование газа

    S t 10 − 16 , см2

    U пр , кВ

    Из табл. 1.4 видно, что хотя транспортные сечения S t для молеку-

    лярных газов и аргона соизмеримы, однако пробивное напряжение аргона существенно ниже.

    1.7. Термическая ионизация

    При высоких температурах может происходить ионизация газа за счет повышения кинетической энергии атомных частиц, называемая термической ионизацией. Так, для паров Na, K, Cs термическая ионизация значительна при температуре в несколько тысяч градусов, а для воздуха при температуре порядка 104 град . Вероятность термической ионизации растет с повышением температуры и уменьшением потенциала ионизации атомов (молекул). При обычных температурах термическая ионизация незначительна и практически может оказать влияние только при развитии дугового разряда.

    Однако следует отметить, что еще в 1951 г. Хорнбеком и Молнаром было обнаружено, что при пропускании моноэнергетических электронов через холодные инертные газы происходит образование ионов при энергии электронов, достаточных только для возбуждения, но не для ионизации атомов. Этот процесс был назван ассоциативной ионизацией.

    Ассоциативная ионизация иногда играет важную роль при распространении волн ионизации и искровых разрядов в местах, где электронов еще очень мало. Возбужденные атомы образуются там в результате поглощения квантов света, выходящих из уже ионизированных областей. В умеренно нагретом воздухе, при температурах 4000÷ 8000 К, молекулы в достаточной степени диссоциированы, но электронов еще слишком мало для развития лавины. Основным механизмом ионизации при этом является реакция, в которой участвуют невозбужденные атомы N и О .

    Ассоциативная ионизация протекает по следующей схеме N + O + 2. 8 эВ ↔ NO + + q . Недостающая энергия 2.8 эВ черпается за счет кинетической энергии относительного движения атомов.

    Заряженных частиц в электрическом и магнитном поле, молекулы необходимо предварительно ионизировать. Существует большое число методов ионизации , при этом наиболее часто используются методы электронного или фотонного удара. Очевидно, что когда речь идет о биомакромолекулах,...

    Типы ионизации

    Процесс ионизации протекает по-разному в зависимости от того с каким зарядом электрон (положительным или отрицательным) в нём участвует. Положительно заряженным ион становится тогда, когда электрон, связанный с атомом или молекулой обладает достаточным количеством энергии, чтобы преодолеть потенциальный электрический барьер, который его удерживал и, таким образом, порвав связь с атомом или молекулой, высвободиться. Количество энергии, затрачиваемое на этот процесс называется энергией ионизации. Отрицательно заряженный ион возникает, когда свободный электрон сталкивается с атомом и затем попадает в энергетическое поле , высвобождая избыток энергии.

    В целом, ионизацию можно разделить на два типа - последовательная ионизация и непоследовательная ионизация . В классической физике, может иметь место только последовательная ионизация . Непоследовательная ионизация нарушает некоторые законы классической физики.

    Классическая ионизация

    С точки зрения классической физики и модели атома Бора, атомная и молекулярная ионизация являются полностью детерминированными, а это значит, что любая проблема может быть определена и решена при помощи вычислений. Согласно классической физике, необходимо, чтобы энергия электрона превосходила энергетическую разницу потенциального барьера, который он пытается преодолеть. В данной концепции это оправдано: как человек не может перепрыгнуть через стену высотой 1 метр, не подпрыгнув в высоту не менее чем на 1 метр, так же и электрон не может преодолеть потенциальный барьер в 13,6 эВ, не обладая как минимум таким же зарядом энергии.

    Положительная ионизация

    В соответствии с этими двумя принципами, количество энергии, необходимое для высвобождения электрона должно быть больше или равно потенциальной разнице между текущей атомической связью или молекулярной орбиталью и орбиталью самого высокого уровня. Если поглощённая энергия превосходит потенциал, тогда электрон высвобождается и превращается в свободный электрон. Иначе электрон входит в возбуждённое состояние, пока поглощённая энергия не рассеется и электрон войдёт в нейтральное состояние.

    Отрицательная ионизация

    Согласно этим принципам и учитывая форму потенциального барьера, свободный электрон должен обладать энергией, которая больше или равна потенциальному барьеру, чтобы его преодолеть. Если свободный электрон обладает достаточной энергией для этого, он остаётся с минимальным энергетическим зарядом, остальная энергия рассеивается. Если электрон не обладает достаточной энергией, чтобы преодолеть потенциальный барьер, он может быть движим электростатической силой, описанной Законом Кулона по отношению к потенциальному энергетическому барьеру.

    Последовательная ионизация

    Последовательная ионизация - это описание того, как происходит ионизация атома или молекулы. Например, ион с зарядом +2 может возникнуть только от иона с зарядом +1 или +3. То есть цифровое обозначение заряда может изменяться последовательно, всегда изменяясь от числа к последующему прилегающему к нему числу.

    Квантовая ионизация

    В квантовой механике, помимо того, что ионизация может происходить классическим способом, при котором электрон обладает достаточной энергией для преодоления потенциального барьера, есть возможность туннельной ионизации.

    Туннельная ионизация

    Туннельная ионизация - это ионизация при помощи квантового туннеля. В классической ионизации электрон должен обладать достаточной энергией для преодоления потенциального барьера, но квантовый туннель позволяет электрону свободно двигаться сквозь потенциальный барьер в силу волновой природы электрона. Вероятность возникновения электронного туннеля сквозь барьер в геометрической прогрессии сокращает ширину потенциального барьера. Поэтому электрон с более высоким энергетическим зарядом может преодолевать энергетический барьер, после чего ширина туннеля сокращается и шанс прохождения через него возрастает.

    Непоследовательная ионизация

    Феномен непоследовательной ионизации имеет место, когда световое электрическое поле становится переменным и сочетается с туннельной ионизацией. Электрон, проходящий через туннель, может вернуться обратно с помощью переменного поля. На этом этапе он может как сочетаться с атомом или молекулой и высвобождать избыток энергии, так и вступать в дальнейшую ионизацию за счёт столкновений с частицами, обладающими высоким зарядом энергии. Эта дополнительная ионизация называется непоследовательной по двум причинам:

    1. Второй электрон перемещается беспорядочно.
    2. Атом или молекула с зарядом +2 может возникнуть прямо от атома или молекулы с нейтральным зарядом, таким образом, заряд, выраженный целым числом, меняется непоследовательно .

    Непоследовательную ионизацию часто изучают при низкой напряжённости лазерного поля, поскольку обычно ионизация является последовательной при высокой скорости ионизации.

    Явление непоследовательной ионизации легче понять на одномерной модели атома, которая ещё недавно была единственной моделью, которую можно было рассмотреть в числовом выражении. Это происходит, когда момент импульса для обоих электронов остаётся таким низким, что они могут эффективно двигаться в одномерном пространстве и может относиться к линейной поляризации, но не к циркулярной. Можно рассматривать два электрона как двухмерный атом, где происходит одновременная ионизации обоих атомов, а это и есть ионизация одного двухпространственного электрона, который превращается в струю вероятности под углом 45° на двухэлектронной проекции, возникшую от множества заряженных ядер или квадратного центра. С другой стороны последовательная ионизация представляет собой эмиссии с оси x и y, когда двухпространственный гипер-электрон проходит по потенциальным каналам Кулона от гипер-ядер и затем вступает в ионизацию под воздействием гипер-электрического поля под углом 45°.

    Ионизация атомов может быть прямой, косвенной или многофотонной. В первом случае атом или молекула при столкновении с фотоном поглощает его энергию и ионизуется. При этом энергия фотона должна превышать энергию ионизации. Во втором случае атом, поглотив энергию фотона, переходит в возбужденное состояние. Если время жизни в возбужденном состоянии достаточно велико, то в результате следующих актов поглощения фотонов также может произойти ионизация атома. Эти процессы можно записать следующим образом:

    где обозначают нейтральный, возбужденный и ионизованный атом.

    В процессе прямой ионизации должны выполняться законы сохранения энергии и импульса:

    где - единичный вектор, определяющий начальное направление светового пучка, и - масса и скорость электрона, М и V - масса и скорость иона. Отделенный от атома электрон движется в направлении, противоположном движению положительного иона . С учетом этого

    Значение правой части выражения (28.3) не может превысить единицу; поэтому

    Первое из выражений (28.2) можно записать в виде

    Это означает, что почти вся энергия кванта передается электрону.

    а. Многофотолная ионизация

    Наибольший интерес представляет процесс многофотонной ионизации. Его теорию разработали Бебб и Голд , Фелпс , Бункин и Прохоров , Келдыш , Делоне , Гонтье и Траин и др. Согласно классификации Делоне, многофотонная ионизация во многих случаях является прямым, резонансным или многофотонным процессом высокого порядка. В общем случае энергия нескольких или даже 10-20 фотонов не равна точно энергии ионизации. Следовательно, взаимодействие этих фотонов с атомом не может быть резонансным. Вероятность ионизации атома в течение 1 с пропорциональна степени потока фотонов (где - кратность процесса ионизации):

    Здесь Пучок рубинового лазера с плотностью мощности эквивалентен потоку фотонов Величина называется эффективным поперечным сечением ионизации порядка. Например, энергия ионизации атома гелия равна 24,58 эВ; энергия одного кванта излучения рубинового лазера - лишь 1,78 эВ, следовательно только одновременное поглощение 14 квантов может обеспечить ионизацию атомов гелия. В табл. 28.2 приведены энергии ионизации некоторых атомов и молекул. Бебб и Голд рассчитали методом теории возмущений эффективные поперечные сечения для ионизации Не и Н; ионизация этих атомов требует одновременного поглощения 7, 8, 9, 13 и 14 квантов излучения рубинового лазера, соответственно. Простейшей аппроксимацией этого процесса является введение перехода дипольного типа и представление электрона, оторванного от атома, в виде плоской волны. Изложить здесь теорию Бебба и Голда невозможно ввиду ее громоздкого характера. Приведем лишь основные результаты работы , которые представлены в виде табл. 28.3. Как видно из таблицы, поперечные сечения многофотонной ионизации чрезвычайно малы. Однако следует помнить о том, что поток фотонов в

    Таблица 28.2 (см. скан) Энергии ионизации некоторых атомов и молекул

    Таблица 28.3 (см. скан) Эффективные поперечные сечения многофотонной ионизации и пороговые потоки фотонов, необходимые для инициирования пробоя и рассчитанные для плотности газа и воздействия лазерного импульса длительностью 10 нс на объем газа

    лазерном пучке может достигать весьма высоких значений. Экспериментальная проверка формулы (28.5) очень; проста. Отложив по осям координат получим прямую, наклон которой определяет

    Процесс многофотонной ионизации можно описать теоретически и без помощи теории возмущений и др.). В этом методе, который часто называют методом Рейсса, учитываются лишь два состояния электрона - начальное и конечное. Если под конечным состоянием понимать ионизованный атом, что соответствует изменению энергии электрона от определенного значения до континуума, можно рассчитать эффективные поперечные сечения многофотонной ионизации для многих водородоподобных атомов. Это облегчило расчет зависимости эффективных поперечных сечений от состояния поляризации света ( и др.), результаты которого нашли экспериментальное подтверждение в работах Кагана и др. , Фокса и др. и Сервенана и Айсенора . Теоретические расчеты показывают, что при вероятность ионизации атомов существенно зависит от состояния поляризации света. При более эффективен свет с круговой поляризацией, чем с линейной. При более эффективным становится свет с линейной поляризацией. Для иллюстрации на рис. 28.15 приведен график зависимости от порядка процесса (при ).

    Каган и др. наблюдали ионизацию паров цезия второй гармоникой рубинового лазера. Процесс был двухфотонным. Установлено, что эффективность ионизации излучением с круговой

    Рис. 28.15. Отношение эффективных поперечных сечений многофотонной ионизации для излучения с круговой и линейной поляризацией в зависимости от числа одновременно поглощаемых квантов излучения неодимового лазера .

    поляризацией была в раза выше, чем для линейно-поляризованного излучения. Вскоре Фокс и др. сообщили о трехфотонной ионизации атомов цезия пучком рубинового лазера, при которой свет с круговой поляризацией в два раза эффективнее, чем с линейной. Кроме того, расчеты без применения теории возмущений показали, что зависимость вероятности многофотонной ионизации от потока фотонов может иметь максимумы и минимумы. Особую роль в процессе многофотонной ионизации играет резонансный эффект. Он возникает, когда суммарная энергия нескольких фотонов точно равна энергии электрона в одном из возбужденных состояний. Таким образом, процесс ионизации может быть двухступенчатым. Вначале электрон переходит в возбужденное состояние, а затем полностью отрывается от атома. В исследования резонансных эффектов внесли значительный вклад Делоне и др. , Эванс и Тонеманн и Хелд и др. .


    ИОНИЗАЦИЯ

    ИОНИЗАЦИЯ

    Образование положит. и отрицат. ионов и свободных эл-нов из электрически нейтральных атомов и молекул. Термином «И.» обозначают как элементарный акт (И. атома, ), так и совокупность множества таких актов (И. газа, жидкости).

    Ионизация в газе и жидкости. Для разделения нейтрального невозбуждённого атома (или молекулы) на две или более заряж. ч-цы, т. е. для его И., необходимо затратить энергию И. W. Для всех атомов данного элемента (или молекул данного хим. соединения), ионизующихся из основного с образованием одинаковых ионов, И. одинакова. Простейший акт И.- отщепление от атома (молекулы) одного эл-на и образование положит. иона. Свойства ч-цы по отношению к такой И. характеризуются её ионизационным потенциалом.

    Присоединение эл-нов к нейтр. атомам или молекулам (образование отрицат. ионов), в отличие от др. актов И., может сопровождаться как затратой, так и выделением энергии; в последнем случае говорят, что атомы (молекулы) обладают сродством к электрону.

    Если энергия И. W сообщается ионизуемой ч-це др. ч-цей (эл-ном, атомом или ионом) при их столкновении, то И. наз. ударной. Вероятность ударной И., характеризуемая т. н. сечением И. (см. ЭФФЕКТИВНОЕ), зависит от рода ионизуемых и бомбардирующих частиц и от кинетич. энергии последних Ек: до нек-рого минимального (порогового) значения Ек эта вероятность равна нулю, при увеличении Ек выше порога она вначале быстро возрастает, достигает максимума, а затем убывает (рис. 1). Если энергии, передаваемые ионизуемым ч-цам в столкновениях, достаточно велики, возможно образование из них, наряду с однозарядными, и многозарядных ионов (многократная И., рис. 2). При столкновениях атомов и ионов с атомами может происходить И. не только бомбардируемых, но и бомбардирующих ч-ц. Налетающие нейтр. атомы, теряя свои эл-ны, превращаются в ионы, а у налетающих ионов увеличивается; это явление наз. «обдиркой» пучка ч-ц. Обратный процесс - захват эл-нов от ионизуемых ч-ц налетающими положит. ионами - наз. перезарядкой ионов (см. СТОЛКНОВЕНИЯ АТОМНЫЕ).

    Рис. 1. Ионизация атомов и молекул водорода электронным ударом: 1 - атомы Н; 2 - Н2 (эксперим. кривые).

    Рис. 2. Ионизация аргона ионами Не+. На оси абсцисс отложена ионизирующих ч-ц. Пунктирные кривые - ионизация аргона электронным ударом.

    В определ. условиях ч-цы могут ионизоваться и при столкновениях, в к-рых передаётся энергия, меньшая W: сначала атомы (молекулы) в первичных соударениях переводятся в , после чего для их И. достаточно сообщить им энергию, равную разности W и энергии возбуждения. Т. о., «накопление» необходимой для И. энергии осуществляется в неск. последоват. столкновениях. Подобная И. наз. ступенчатой. Она возможна, если столкновения происходят столь часто, что ч-ца в промежутке между двумя соударениями не успевает потерять энергию, полученную в первом из них (в достаточно плотных газах, высокоинтенсивных потоках бомбардирующих ч-ц). Кроме того, механизм ступенчатой И. очень существен в случаях, когда ч-цы ионизуемого в-ва обладают метастабилъными состояниями, т. е. способны относительно долгое сохранять энергию возбуждения.

    И. может вызываться не только ч-цами, налетающими извне. При достаточно высокой темп-ре, когда энергия теплового движения атомов (молекул) велика, они могут ионизовать друг друга за счёт кинетич. энергии сталкивающихся ч-ц - происходит термическая И. Значит. интенсивности она достигает, начиная с темп-р -103-104 К, напр. в дуговом разряде, ударных волнах, в звёздных атмосферах. Степень термич. И. газа как ф-ция его темп-ры и давления оценивается Саха формулой для слабоионизованного газа в состоянии термодинамич. равновесия.

    Процессы, в к-рых ионизуемые ч-цы получают энергию И. от фотонов (квантов эл.-магн. излучения), наз. фотоионизацией. Если (молекула) не возбуждён, то энергия ионизующего фотона hn (n - частота излучения) в прямом акте И. должна быть не меньше энергии И. W. Для всех атомов и молекул газов и жидкостей W такова, что этому условию удовлетворяют лишь фотоны УФ и ещё более коротковолнового излучения. Однако фотоионизацию наблюдают и при hn

    Если разность hn-W относительно невелика, то поглощается в акте И. Фотоны больших энергий (рентгеновские, g-кванты), затрачивают при И. часть своей энергии (изменяя свою частоту). Такие фотоны, проходя через в-во, могут вызвать значит. число актов фотоионизации. Разность DE-W (или hn-W при поглощении фотона) превращается в кинетич. энергию продуктов И., в частности свободных эл-нов, к-рые могут совершать вторичные акты И. (уже ударной).

    Большой интерес представляет И. лазерным излучением. Его частота обычно недостаточна для того, чтобы одного фотона вызвало И. Однако чрезвычайно высокая потока фотонов в лазерном пучке делает возможной И., обусловленную одновременным поглощением неск. фотонов (многофотонная И.). Экспериментально в разреженных парах щелочных металлов наблюдалась И. с поглощением 7-9 фотонов. В более плотных газах И. лазерным излучением происходит комбиниров. образом. Сначала многофотонная И. освобождает неск. «затравочных» эл-нов. Они разгоняются полем световой , ударно возбуждают атомы, к-рые затем ионизуются светом (см. СВЕТОВОЙ ПРОБОЙ). Фотоионизация играет существ. роль, напр., в процессах И. верхних слоев атмосферы, в образовании стримеров при электрич. пробое газа.

    И. атомов и молекул газа под действием сильных электрич. полей (=107 -108 В*см-1), наз. автоионизацией, используется в ионном проекторе и электронном проекторе.

    Ионизованные газы и жидкости обладают электропроводностью, что, с одной стороны, лежит в основе их разл. применений, а с другой - даёт возможность измерять степень И. этих сред, т. е. отношение концентрации заряж. ч-ц в них к исходной концентрации нейтр. ч-ц.

    Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

    ИОНИЗАЦИЯ

    Превращение электрически нейтральных атомных частиц (атомов, молекул) в результате превращения из них одного или неск. электронов в поло ионы и свободные электроны. Ионизовываться могут также и ионы, что приводит к повышению крат их заряда. (Нейтральные атомы и молекулы мо особых случаях и присоединять электроны, об отрицательные ионы. )Термином "И." обозна как элементарный акт (И. атома, молекулы), исовокупность множества таких актов (И. газа, фотоионизация); ионизация полем; И. при взаимодействии с поверхностыо твёрдого тела ( поверхностная ионизация); ниже рассматриваются первые два типа И. Столкновнтельная ионизация является важнейшим механизмом И. в газах и плазме. Элементарный акт И. характеризуется эфф. сечением ионизации s i [см 2 ], зависящим от сорта сталкивающихся частиц, их квантовых состояний и скорости относительного движения. При анализе кинетики И. используются понятия скорости И. <v s i (v )>, характеризующей число ионизации, к-рое может произвести одна ионизующая частица в 1 с:

    Здесь v - скорость относит, движения и F (v) - ф-ция распределения по скоростям ионизующих частиц. Вероятность ионизации w i данного атома (молекулы) в единицу времени при плотности N числа ионизующих частиц связана со скоростью И. соотношением Определяющую роль в газах и плазме играет И. электронным ударом (столкновения со сводными

    Рис. 1. Ионизация атомов и молекул водорода электронным ударом; 1 - атомы Н; 2 - молекулы Н 2 (экспериментальные кривые); 3 - атомы Н (теоретический расчёт, Борна); 4 - расчёт

    электронами). Доминирующим процессом является одноэлектронная И.- удаление из атома одного (обычно внеш.) электрона. Кинетич. энергия ионизующего электрона при этом должна быть больше или равна энергии связи электрона в атоме. Мин. значение кинетич. энергии ионизующего электрона наз. порогом (границей) ионизации. Сечение И. атомов, молекул и ионов электронным ударом равно нулю в пороге, возрастает (приблизительно по линейному закону) с ростом кинетич. энергии, достигает макс, значения при энергиях, равных нескольким (2-5) пороговым значениям, автоионизационных состояний либо И. внутр. оболочек атома. Последние можно рассматривать независимо, поскольку их вклад в И. связан с др. электронными оболочками атома.

    Рис. 2. Ионизация атомов Zn электронным ударом вблизи порога.

    Наряду с одноэлсктронпои И. возможно удаление двух и более электронов в одном акте столкновения при условии, что кинетич. энергия больше или равна соответствующей энергии И. Сечение этих процессов в неск. раз (для двух- и трёхэлектронных) или на неск. порядков величины (для многоэлектронных процессов) меньше сечений одноэлектронной И. Поэтому в кинетике И. газов и плазмы осн. роль играют процессы одноэлектронной И. п одноэлектронного возбуждения автоионизац. состояний.
    где а 0 =0,529.10 -8 см - Бора радиус; R =13,6 эВ -т. н. ридбергова единица энергии, равная энергии И. атома водорода из осн. состояния (см. Ридберга постоянная); E i - энергия И. рассматриваемого состояния атома или иона; n l - число эквивалентных электронов в оболочке атома; l - значение орбитального момента нач. состояния электрона; величина u=(E-E i )/E i есть разность кинетич. энергии налетающего электрона Eи порога ионизации E i , выраженная в единицах E i . Ф-ции Ф(u)вычислены и табулированы для большого количества атомов и ионов в . При больших энергиях налетающего электрона EдE i применяется возмущений теория первого порядка (т. н. борновское приближение). В этом случае для И. атома водорода из осн. состояния ф-ция

    В областях малых и средних энергии налетающего электрона (uхl) важнейшим эффектом, влияющим на величину s i , является эффект обмена, связанный с тождественностью налетающего и выбитого из атома электронов . Расчёт s i одноэлектронной И. в рамках теории возмущений с учётом эффекта обмена приводит к удовлетворит, согласию с экспериментом для большинства атомов и ионов .Усовершенствование (и усложнение) методов расчёта позволяет описать детальную структуру ионизац. кривых, а также освободившихся электронов по энергии и углу рассеяния (т. и. дифференц. сечения).Указанная выше скорость И. (1) в предположении максвелловского распределения электронов по скоростям может быть представлена в виде

    где b= E i /kT, T - темп-pa ионизующих электронов. Ф-ции G(b) вычислены и табулированы в для большого числа атомов и ионов. Как видно из формул (2)и (4), с повышением заряда иона Z () И. убывает пропорц. Z -4 , аскорость И.С повышением энергии налетающего электрона энергетически возможно выбивание одного из электронов

    Рис. 3. Ионизации атома водорода протонами: 1 - экспериментальные данные; 2 - расчёт в приближении Борна; 3 - расчёт .

    внутр. оболочек ( К, L, . .. )многоэлектронных атомов (или ионов). Соответствующие течения и скорости И. описываются также ф-лами (2) и (4). Однако создание вакансии во внутр. оболочке приводит к образованию автоионизац. состояния атома, к-рое неустойчиво и распадается с удалением из атома одного или неск. электронов и излучением фотонов (оже-эффект). Но сечения этого процесса много меньше сечения И. внеш. оболочки, поэтому в плазме доминирующим механизмом образования многозарядных ионов является последовательная И. внеш. оболочек.

    В плотных газах и при высокоинтенсивных потоках бомбардирующих частиц, обладающих кинетич. энергией i , возможна т. н. ступенчатая И. В первом соударении атомы переводятся в возбужденное состояние, а во втором соударении ионизуются (двухступенчатая И.). Ступенчатая И. возможна только в случаях столь частых соударений, что частица в промежутке междуРис. 4. Экспериментальные данные по ионизации атомов водорода многозарядными ионами углерода, азота и кислорода .двумя соударениями не успевает потерять (излучить) энергию, напр, если атомы ионизуемого вещества обладают метастабильными состояниями. Ионизация молекул электронным ударом отличается от И. атомов большим числом разл. процессов. Если молекулярная система, остающаяся после удаления электрона, оказывается устойчивой, ион; в противном случае система диссоциирует с образованием атомных ионов. Число возможных процессов И. с диссоциацией молекул возрастает с увеличением числа атомов в молекуле и в случае многоатомных молекул приводит к образованию большого числа осколочных ионов. Наиб, детально экспериментально и теоретически изучена И. двухатомных молекул. Из рис. 1 видно, что при больших энергиях электрона (в области борцовского приближения) ионизац. кривые для молекулы Н 2 (2) и для атома Н (1) отличаются примерно в два раза, что соответствует различию в числе электронов. i) экспериментально не наблюдались. Сечения И. атомов протонами (рис. 3) и др. ионами (рис. 4) качественно подобны сечениям И. электронным ударом в масштабе скоростей относит, движения сталкивающихся частиц. И. максимально эффективна, когда скорость относит, движения порядка скорости орбитальных электронов, т. е. при энергиях ионизующих ионов в десятки кэВ (для И. из осн. состояния атомов). Эксперимент и расчёт показывают, что макс, значение сечения И. атома ионами растёт с ростом заряда иона пропорц. величине заряда. При меньших скоростях механизм И. усложнён образованием квазимолекулы в процессе столкновения, т. е. перераспределением. электронов между ядрами сталкивающихся атомных частиц. Это может приводить к появлению дополнительных максимумов в области малых скоростей.

    Рис. 5. Ионизация молекулярного водорода атомами водорода (кривая 1)и протонами (кривая 2).

    И. атомов и молекул в столкновениях с нейтральными атомами объясняется теми же механизмами, что и в столкновениях с ионами, однако, как правило, количественно менее эффективна. На рис. 5 приведены для сравнения ионизац. кривые для ионизации молекулярного водорода атомами водорода и протонами. перезарядка ионов."Квазимолекулярный" характер процессов столкновений атомных частиц при малых скоростях может приводить к более эффективному, чем в электронных столкновениях (при тех же скоростях), образованию ионов с зарядом больше единицы. Диагностика плазмы). При этом необходимо иметь надёжные данные о темп-ре (ф-ции распределения) частиц и их плотности. Этот метод успешно применяется для исследования И. многозарядных (Zа10) ионов электронным ударом. Ионизация светом (фотоионизация) - процесс И. атомных частиц в результате поглощения фотонов. В слабых световых полях происходит однофотонная И. В световых полях высокой интенсивности возможна многофотонная ионизация. Напр., частота лазерного излучения обычно недостаточна для того, чтобы поглощение одного фотона вызвало И. Однако чрезвычайно высокая плотность потока фотонов в лазерном пучке делает возможной многофотонную И. Экспериментально в разреженных парах щелочных металлов наблюдалась И. с поглощением 7-9 фотонов.
    где a= 1 / 137 - тонкой структуры постоянная, w г - граничная чистота фотоионизации, w - частота фотона и . Для атома водорода w г =109678,758 см -1 (l@1216 Е). (В спектроскопии частота часто даётся в "обратных" см, т. е. ~1/l.) Вблизи границы фотоионизации (w-w г Ъw г)

    вдали от границы (w-w г дw г)

    Сечение фотоионизации из возбуждённых состояний убывает с ростом гл. квантового числа n пропорц. n -5 (для n/З). Сечение фотоионизации s ф связано с коэф.

    Рис. 6. Фотоионизация атомов щелочных металлов: лития(1 - эксперимент; 2 - расчёт) и натрия (3 - эксперимент;4 - расчёт).

    фотопоглощения фотона фиксированной частоты следующим образом:

    Здесь сумма берётся по всем уровням атома, для к-рых энергетически возможна , и N n - плотность числа атомов в состоянии n. Вычисление сечений и сопоставление с эксперим. данными (в т. ч. и дляневодородоподобных атомов) приведены в . Сечение фотоионизации на 2-3 порядка ниже s i при столкновениях. Z имеет смысл эфф. заряда остова, в поле к-рого движется ). Фотоионизация глубоких внутр. оболочек атомов, в отличие от И. электронным ударом, практически нe влияет на электроны внеш. оболочек, т. е. является весьма селективным процессом. Оже-эффект, сопровождающий ликвидацию вакансии во внутр. оболочке, приводит к образованию многозарядного иона. При этом могут образоваться ионы неск. степеней кратности. В табл. даны вычисленные и наблюдаемые значения ср. зарядов ионов для нек-рых атомов.
    Т а б л. - Вычисленные и наблюдаемые значения средних зарядов ионов


    Экспериментально фотоионизация исследуется по измерению коэф. поглощения, регистрации числа образовавшихся ионов, измерению рекомбинац. излучения (сечения обратного процесса - фоторекомбинации). Фотоионизация играет существенную роль в ионизацонном балансе верхних слоев атмосферы, планетарных туманностей, подверженных ионизующему излучению звёзд и др. плазму. Процессом, обратным И., является рекомбинация ионов и электронов, связанная с ионизац. процессами соотношениями, следующими из принципов детального равновесия. Процессы И. и рекомбинации играют важную роль во всех электрич. разрядах в газах и разл. газоразрядных приборах. Лит.: 1) Донец Е. Д., Овсянников В. П., Исследование ионизации положительных ионов электронным ударом, "ЖЭТФ ", 1981, т. 80, с. 916; 2) Петеркоп Р. П. Пресняков.

    Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


    Синонимы :

    Смотреть что такое "ИОНИЗАЦИЯ" в других словарях:

      ИОНИЗАЦИЯ, превращение атомов и молекул в ионы и свободные электроны; процесс, обратный рекомбинации. Ионизация в газах происходит в результате отрыва от атома или молекулы одного или нескольких электронов под влиянием внешних воздействий. В… … Современная энциклопедия

    Лучшие статьи по теме